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A FINITE DIFFERENCE APPROXIMATION OF
A SINGULAR BOUNDARY VALUE PROBLEM

H. Y. LEE, M. R. OuMm, AND J. Y. SHIN*

ABSTRACT. We consider a finite difference approximation to a sin-
gular boundary value problem arising in the study of a nonlinear
circular membrane under normal pressure. It is proved that the
rate of convergence is O(h2). To obtain the solution of the finite dif-
ference equation, an iterative scheme converging monotonically to
the solution of the finite difference equation is introduced. And the
numerical experiment of this method is given.

1. Introduction

In the study of a nonlinear circular membrane under normal pressure
(3, 4], the following singular boundary value problem arises:

2
—y”—iy'———2=0, 0<z<l,
T Yy

(1.1)
y'(0) =0, and y(1)=A(>0).

The existence of a unique positive solution has been discussed by [2, 3,
4, 8]. Numerical solutions of this problem can be obtained by the iter-
ative method [2] and numerical techniques [4] on the integral equation,
equivalent to (1.1). Because of the singularity and the nonlinearity, dif-
ficulties are encountered if (1.1) is replaced by a finite difference equa-
tion and a numerical solution is attempted. In [7], the linearization
technique to (1.1) and Gustafsson’s method (6] to the linear equation
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are used to avoid the above difficulities. And the error estimate of the
method is given.

In this paper, we study a finite difference approximation to (1.1)
which results the rate of convergence-O(h?) and which can avoid the
above difficulties. The rate of convergence -O(h?) is an optimal global
error when three point finite difference approximation is used. Our
error estimate is better than one in [7]. To obtain the solution of the
finite difference equation, we introduce an iterative scheme converging
monotonically to the solution of the finite difference equation. In section
2, we consider the behaviour of the solution of (1.1) at z = 0 which
is needed in the discretization of (1.1) near the singular point z =
0. In section 3, a finite difference approximation is introduced and
an iterative scheme converging monotonically to the solution of the
finite difference equation is given. The rate of convergence-O(h?) is
established in section 4. In section 5, the rate of convergence-O(h?) is
given numerically.

2. Behaviour of the solution of (1.1) at z =10

To discuss the behaviour of the solution of (1.1) at z = 0, we begin
with the following lemma whose proof is straightforward.

LeMMA 2.1. Let f € C[0, 1) and f' € C(0, 1). If Elél+ f'(z) exists,

then
GRS (U N,

’ YT
f+ (O) a ml—l—)r{)lﬁ- z—0+

which implies that f'(z) is continuous at = 0.

It was shown in [8] that there exists a unique positive solution Y €
C?%(0, 1) N C[0, 1] of (1.1). Thus we obtain the following lemma from
Lemma 2.1 and the fact that

: __szz_sa_
Y'(z) = A Yz(s)ds'

LEMMA 2.2. Let Y be the positive solution of (1.1). Then
(1) Y{(0) exists and Y"(z) is continuous at = = 0.
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(2) Yf’)(O) (= 0) exists and Y®)(x) is continuous at = = 0.
(3) Yf)(()) exists and Y ) (z) is continuous at = = 0.
REMARK. Lemma 2.2 implies that if Y is the positive solution of
(1.1) then Y € C*[0, 1].

3. A finite difference approximation

1 . .

Let Ne ZT, hzﬁ, zj=j-h, yj=y(z;), 7=0,1,2,---, N.

Consider the following finite difference approximation:
Yyi—% 2
-8. -5 =0,
h? v3
4 P22ty 2
TR 2T
(3.1) Y1 =2t Yier 3 Y —¥io1 2 0
h? T; 2h yi2 ’
for 1=2,3,4,---, N—1,
YN = A

Let
L=

8 —8 0 0

—4 8 —4 0 0

0 —2+—3-h 4 —-2—3-h 0

) 2
0 —24h 4 o 3,
3 T3
0 0 -24 3 h 4 —2— h
TN-2 TN-—-2
0 0 0 —2+4 3 h 4
L IN-1
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2h? 2R 4h2 4h2 4h? 3h \'
Ny=|——3s =75, 73 "y =g —5— — 2\~ A
Yo n Y3 YNn_2 Yn-1 IN-1
Y= (y(), Y1, Y2, -, yN—l)t,

where Ny and y are column vectors. Now we have the nonlinear system
(3.2) Ly + Ny =0,

where 0 is the zero matrix. To solve the nonlinear matrix equation
(3.2), we use Newton’s method. So, for m =0, 1, 2, --- | we have

-1
(33)  ymtD =yt (L +N ’y(m)) - (Ly("‘) + Ny(’")) .
Therefore, from (3.3), we derive
(34)  Ly"™b 4+ [N ’y(m)] y(m+D = [N’y("‘)] y™ — Ny(™

and
(3.5)
Ly™ D 4 Ny(m+D) = Ny(mtD) _ Ny(m) _ yry(m) [y(m-f-l) _ y(m)]

1 m (m+1) _ (m))?
=§N”£( )((yj =Y, ) ’

where §§-m) is between y§-m+l) and y;-m).

LEMMA 3.1(1].

(1) The M-matrix L is an inverse positive matrix.

(2) The matrix L + N'(y) is an inverse positive matrix for any
y > 0.

Proof. (1) Let D; be the i-th leading principal minor of L. Then we
obtain

h
D=8, Dy=32, D3= <2+ -?;’_—) Do,
2

: 3h
-, Dy = <2+ ) Dn_,4,
TN-1
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which imply that the M-matrix L is an inverse positive matrix.
(2) It is clear that the matrix L + N’(y) is also an inverse positive
matrix for any y > 0. a

LEMMA 3.2. Ifu satisfies Lu + Nu > 0 and 1 satisfies L1+ N1 <0,
then
1<,

where 0 < u; and A<I[; fori=0,1,2, -.-, N - 1.
Proof. From the assumptions on u and [, we have
0<Lu+ Nu-Ll- N1
<Lu-1)+N(u-1
< (L+N'g)(u-1),

where &; lies between [; and w;. Since L + N’€ is inverse positive,
u — 1> 0, which completes the proof. |

LEMMA 3.3. Ify(O) = X and {y(™)} is given by (3.3) or (3.4), then

Y(O)Sy(l)ﬁy(z)ﬁﬁy(m)ﬁw for m:Oa 172""7
where 0 <wuj fort=0,1,2, .-+, N—1and Lu+ Nu > 0.
Proof. 1t is obvious from (3.3), (3.5), and Lemma 3.2. a

LEMMA 3.4. The matrix equation (3.2) has a unique solution.

Proof. The matrix equation (3.2) has a solution from Lemma 3.3.
Suppose that y and w are solutions of the matrix equation (3.2) and
z =y — w. Then we have

Lz+ Ny -—Nw=20

So we obtain

(L+N'€)z=0,
where &; is between y; and w;. Since L + N’¢ is an inverse positive
matrix, 2 = 0 and hence y = w. d
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4. Convergence of the difference scheme

In this section, we want to prove that the finite difference approxima-
tion (3.1) converges to the analytic solution of (1.1) as h — 0 and that
the rate of convergence is O(h?). First we prove the following lemma
about difference operators which will be needed in establishing an error
bound theorem. For this type of analysis, one is referred to [5, Section
5.5].

LEMMA 4.1. Let Q(z;) = @i, E(z;) = E;, be discrete functions
defined on zg, 1, Z2, +++, Tn. Assume that there exists an w > 0
such that

Qi<-w<0, i=0,1,2 ---, N-1

4
Set C = max (1, a) At the grid points xg, x1, 2, -+, TN-1, define

the difference operator Ly by

E, - Ey

LnEy =8~

+ QOEO)

E; -2E, + Ey

LhEr =4 =

+ Q1 F,

and

Ei1-2E;+F;y 3 Ei-E_,
h2 + 'x_z 2h + QzEz,

i=23, -, N-1.

Lth =

Then,

'E’L| < C IEN]_'_Og]_'}ag(N |LhEJ|], Z:O’ 1, 27 cee N.

Proof. Note that C > 1. If max |E;| occurs for ¢ = N, then

1< ) : A1
B < g, |B) < |Bx| < C 1Bl + o, B
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Suppose that max |E;| occurs for one of i =0, 1, 2, ---, N — 1. Then
we have

h? h?
4 ] 1m0l < 411+ gl <
2

h
sup |E;| + 5 . Sup |LnEj],
0<j<N-1 0<j<N-1

h2 h2
[4 — ?Ql] |E1‘ < 2|E2] + 2|E0| + ?thEll <4

h2
sup |Ejl+ —- sup |LpFEjl,

0<F<N-1 2 o0gj<N-1
and
2 3 3
[4—2R°Q;] |Ei| <|2— —h|- sup |E;|+|2+ —h|- sup |E;|
Z; 0<j<N-1 Z; 0<j<N-1
+2h*. sup |LpEj|, i=2,3,---, N-1.
0<j<N-1

Since w < —@Q; and 0 < 2 — —ih, we obtain

7

2
[4+%w]' sup [Ej[<4- sup |Ej[+2h%- sup |LnEj|.
1

0<i<N-1 0<j<N- 0<j<N-1
Thus 4
sup |E;] < —- sup |LpEj,
0<iSN -1 W 0<j<N-1
which completes the proof. a

THEOREM 4.2. Let Y = Y(z) € C*[0, 1] be the analytic solution
of the boundary value problem (1.1). Lety;, 1=0,1,2, ---, N —1,
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be the numerical solution of Ly + Ny = 0 and E; = Y (z;) — y; be the
error. Then

|E;| < CMyh?
where
4
M4 =max|—-| and C is a constant.
dz*

Proof. By Mean Value Theorem and Taylor Theorem, we obtain

0 =4Y" (o) + @
Y(z))-Y 2 h?
-5 T PagE Y &) g w0 <bo<a,
1" 3 ’ 2
0=Y (a:l)+x—l-Y(a:1)+Y—(;)-5
=4Y"(21) + 3(Y" (&) — Y"(z1)) + Y(2 E

Y(.’L‘o) — 2Y((L‘1) + Y(.’Eg) _ h?

—4. . 3 ¥ @ (no) + YO ()

2
+3Y (&) €160~ 1) + gz

where xg < mp < 1 <M < X2, xg <& <& <zx1,and xg < &2 < &
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And fori=2, 3,4, ---, N — 1, we obtain
" ) 2
O=Y(1)+ Y(:cz)+ Y(@)?
_ Y((Ei_l) — 2Y(.’Bi) + Y(:L','_H) " i ) Y(:L‘H.l) - Y(.’ti_l) + 2
h2 z; 2h Y(z:)?
h? 3 h?

— o [YO0m0) + YO )] - = - % [y (o) + Y (6)]

Y(:ci_l) — 2Y(:B.i) -+ Y(:B.H,l) I }_ ) Y(.’lf1;+1) - Y(:L‘i_l) + 2
h2 T; 2h Y(.’Bi)2

A (@ @
+ o [YOm0) + YO ()]

s [Y“")(E )+ Y O(e) D 1y (g, )ﬁ—;—i]

where z; 1 <Mp < ;i <7 < Tit1, Ti-1 <& <& <z <EHE<H <
Tit1, and T < &g <&

Define
Ei—E h2
LnEo =8~  + QoEo = Y<4>(g0)-—3-
E, — 2F E
LhE1=4'-——2——’?;i—-Q+Q1E1

2
= % [Y(4)(170) + Y(4)(n1)] - 3Y(4)(€2) . 61(60 _ xl),
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and fori=2,3, ---, N—1,
Ei1-2E;+E,_y 3 Ej—E,
LpyE; = % + -’sz . T + QE;
= 37 [Y©0m0) + YO (m)]
24

B o + v s yme o]

2 F 4
where F(x’y):—y—Z’ le%(mnul):_—ﬁ S—'w<0, AS“’LS
Y (0). '

dty .
Let My = max|——|. Then we obtain
dx?
h2
|LpEg| < ?M‘;,
h? 2
|LhEq| < ?M4 + 3h“My,
andfori=2,3, ..., N—-1,

|LhE;i| < ;‘—;M4 + 2h° M.
Thus, by Lemma 4.1, we have
|E;| < CM4h?, for i=0,1,2,---, N1,
which completes the proof. 0

5. Numerical experiment

The scheme, proposed in section 3, has been implemented on an IBM
PC. In the computation, we use

B+ () — o®) (3] < _ -7
o mmax (z;) =y (z;)] £ TOL=1.0x 10
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to stop the iteration when we solve the nonlinear system (3.2) by New-
ton’s method (3.3) or (3.4). In table 1 and table 2, we report the value
of Gmaz(N) and Smin(N) for N = 10, 20, 40, 80 and A = 0.2, 0.5,

where
[v?N (z5) — y™ (z;)|

6ma:z: N = ’
(N) = max v (z;) — 12N ()]

2N N _ ., N .
bn(N) = min |y (z;) —y (wa)|,
5=0,1,-,N-1 |y4N (z;) — y2N (z;)|

and y" represents the solution of the nonlinear system (3.2) for the
given N. From table 1 and table 2, we see numerically that Theorem
4.2 is valid.

TABLE 1. 01maz(N),dmin(N) for N = 10, 20, 40, 80 and A = 0.2

N 5ma:x:(N) 6mz'n(N)

10 3.289144 2.834405
20 3.616159 3.399068
40 3.851348 3.769886
80 3.955196 3.930854

TABLE 2. 0maz(IV), Omin(IN) for N = 10, 20, 40, 80 and A = 0.5

N 6maz (N) amzn(N)

10 3.924187 3.723372
20 3.970172 3.919595
40 3.992187 3.978961
80 3.998023 3.994676
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