FUZZY IDEALS IN NEAR-RINGS

SUNG MIN HONG, YOUNG BAE JUN AND HEE SIK KIM

ABSTRACT. In this paper, we give another proof of Theorem 2.13 of [4] without using the sup property. For the homomorphic image $f(\mu)$ and preimage $f^{-1}(\nu)$ of fuzzy left (resp. right) ideals μ and ν respectively, we establish the chains of level left (resp. right) ideals of $f(\mu)$ and $f^{-1}(\nu)$, respectively. Moreover, we prove that a necessary condition for a fuzzy ideal μ of a near-ring R to be prime is that μ is two-valued.

1. Introduction

S. Abou-Zaid [1] introduced the notion of a fuzzy subnear-ring, and studied fuzzy left (resp. right) ideals of a near-ring, and gave some properties of fuzzy prime ideals of a near-ring. In [4], S. D. Kim and H. S. Kim proved that the homomorphic image of a fuzzy left (resp. right) ideal which has the "sup property" is a fuzzy left (resp. right) ideal. In this paper, we give another proof of Theorem 2.13 of [4] without using the sup property. For the homomorphic image $f(\mu)$ and preimage $f^{-1}(\nu)$ of fuzzy left (resp. right) ideals μ and ν respectively, we establish the chains of level left (resp. right) ideals of $f(\mu)$ and $f^{-1}(\nu)$, respectively. Moreover, we prove that a necessary condition for a fuzzy ideal μ of a near-ring R to be prime is that μ is two-valued.

Received May 22, 1997. Revised December 27, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 03E72, 16Y30.

Key words and phrases: near-ring, fuzzy (prime) ideal, sup property, f-invariant, product.

This work was supported by the Basic Science Research Institute Program, Ministry of Education, 1996, Project No. BSRI-96-1406.

2. Preliminaries

By a *near-ring* [8] we mean a non-empty set R with two binary operations "+" and "." satisfying the following axioms:

- (1) (R,+) is a group,
- (2) (R, \cdot) is a semigroup,
- (3) $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in R$.

Precisely speaking, it is a left near-ring because it satisfies the left distributive law. We will use the word "near-ring" in stead of "left near-ring". We denote xy instead of $x \cdot y$. Note that x0 = 0 and x(-y) = -xy but in general $0x \neq 0$ for some $x \in R$. Let R and S be near-rings. A map $f: R \to S$ is called a (near-ring) homomorphism if f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y) for any $x, y \in R$. An ideal I of a near-ring R is a subset of R such that

- (4) (I, +) is a normal subgroup of (R, +),
- (5) $RI \subseteq I$,
- (6) $(r+i)s rs \in I$ for any $i \in I$ and any $r, s \in R$.

Note that I is a *left ideal* of R if I satisfies (4) and (5), and I is a *right ideal* of R if I satisfies (4) and (6).

We note that the intersection of a family of left (resp. right) ideals is a left (resp. right) ideal, and that the onto homomorphic image of a left (resp. right) ideal is also a left (resp. right) ideal.

We now review some fuzzy logic concepts (see [2], [9] and [10] for details). A fuzzy set μ in a set R is a function $\mu: R \to [0,1]$. Let $\text{Im}(\mu)$ denote the image set of μ . Let μ be a fuzzy set in a set R. For $\alpha \in [0,1]$, the set

$$R^{\alpha}_{\mu} := \{x \in R | \mu(x) \ge \alpha\}$$

is called a level subset of μ .

Let f be a mapping from a set R to a set S and let μ and ν be fuzzy sets in R and S, respectively. Then $f(\mu)$, the *image* of μ under f, is a fuzzy set in S:

$$f(\mu)(y) := \left\{ egin{array}{ll} \sup_{x \in f^{-1}(y)} \mu(x) & ext{if } f^{-1}(y)
eq \emptyset, \ 0 & ext{otherwise,} \end{array}
ight.$$

for all $y \in S$. $f^{-1}(\nu)$, the *preimage* of ν under f, is a fuzzy set in R:

$$f^{-1}(\nu)(x) := \nu(f(x))$$

for all $x \in R$.

We say that a fuzzy set μ in R has the *sup property* if, for any subset T of R, there exists $t_0 \in T$ such that

$$\mu(t_0) = \sup_{t \in T} \mu(t).$$

Let f be a mapping from a set R to a set S and let μ be a fuzzy set in R. Then μ is said to be f-invariant if f(x) = f(y) implies $\mu(x) = \mu(y)$ for all $x, y \in R$. Clearly, if μ is f-invariant then $f^{-1}(f(\mu)) = \mu$.

3. Fuzzy Ideals

Let R be a near-ring and μ be a fuzzy set in R. We say that μ is a fuzzy subnear-ring of R if, for all $x, y \in R$,

- (7) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\},\$
- $(8) \ \mu(xy) \geq \min\{\mu(x), \mu(y)\}.$

 μ is called a fuzzy ideal of R if μ is a fuzzy subnear-ring of R and

- $(9) \ \mu(y+x-y) \geq \mu(x),$
- $(10) \ \mu(xy) \geq \mu(y),$
- (11) $\mu((x+z)y-xy) \geq \mu(z)$,

for any $x, y, z \in R$.

Note that μ is a fuzzy left ideal of R if it satisfies (7), (8), (9) and (10), and μ is a fuzzy right ideal of R if it satisfies (7), (8), (9) and (11) (see [1]).

LEMMA 1 ([1, Theorem 4.2]). Let μ be a fuzzy set in a near-ring R. Then the level subset R^{α}_{μ} is a subnear-ring (resp. an ideal) of R for all $\alpha \in [0,1]$, $\alpha \leq \mu(0)$ if and only if μ is a fuzzy subnear-ring (resp. a fuzzy ideal).

The following proposition will be used in the sequel.

PROPOSITION 1. Let f be a mapping from a set R to a set S, and let μ be a fuzzy set in R. Then for every $\alpha \in (0,1]$,

$$S_{f(\mu)}^{\alpha} = \bigcap_{0 < \beta < \alpha} f(R_{\mu}^{\alpha - \beta}).$$

Proof. Let $\alpha \in (0,1]$. For $y=f(x) \in S$, assume that $y \in S^{\alpha}_{f(\mu)}$. Then

$$\alpha \leq f(\mu)(y) = f(\mu)(f(x)) = \sup_{z \in f^{-1}(f(x))} \mu(z).$$

Hence for every real number β with $0 < \beta < \alpha$, there exists $x_0 \in f^{-1}(y)$ such that $\mu(x_0) > \alpha - \beta$, and so $y = f(x_0) \in f(R_{\mu}^{\alpha-\beta})$. Therefore $y \in \bigcap_{0 < \beta < \alpha} f(R_{\mu}^{\alpha-\beta})$.

Conversely, let $y \in \bigcap_{0 < \beta < \alpha} f(R_{\mu}^{\alpha-\beta})$. Then $y \in f(R_{\mu}^{\alpha-\beta})$ for every β with $0 < \beta < \alpha$, which implies that there exists $x_0 \in R_{\mu}^{\alpha-\beta}$ such that $y = f(x_0)$. It follows that $\mu(x_0) \ge \alpha - \beta$ and $x_0 \in f^{-1}(y)$, so that

$$f(\mu)(y) = \sup_{z \in f^{-1}(y)} \mu(z) \ge \sup_{0 < \beta < \alpha} \{\alpha - \beta\} = \alpha.$$

Hence $y \in S^{\alpha}_{f(\mu)}$, and the proof is complete.

S. D. Kim and H. S. Kim [4] proved the following theorems.

THEOREM 1. ([4, Theorem 2.12]). A near-ring homomorphic preimage of a fuzzy left (resp. right) ideal is a fuzzy left (resp. right) ideal.

THEOREM 2 ([4, Theorem 2.13]). A near-ring homomorphic image of a fuzzy left (resp. right) ideal having the sup property is a fuzzy left (resp. right) ideal.

Now we give another proof of Theorem 2 without using the sup property.

THEOREM 3. Let $f: R \to S$ be an onto near-ring homomorphism and let μ be a fuzzy left (resp. right) ideal of R. Then $f(\mu)$ is a fuzzy left (resp. right) ideal of S.

Fuzzy ideals in near-rings

Proof. In view of Lemma 1 it is sufficient to show that $S_{f(\mu)}^{\alpha}$, $\alpha \in [0, \mu(0)]$, is a left (resp. right) ideal of S. Note that $S_{f(\mu)}^{0} = S$, and if $\alpha \in (0,1]$ then $S_{f(\mu)}^{\alpha} = \bigcap_{0 < \beta < \alpha} f(R_{\mu}^{\alpha-\beta})$ by Proposition 1. Since $R_{\mu}^{\alpha-\beta}$ is a left (resp. right) ideal of R and since f is onto, $f(R_{\mu}^{\alpha-\beta})$ is a left (resp. right) ideal of S. Therefore $S_{f(\mu)}^{\alpha}$ is an intersection of a family of left (resp. right) ideals is also a left (resp. right) ideal of S, ending the proof.

THEOREM 4. Let f and μ be as in Theorem 3. Then there is a one-to-one correspondence between the set of all f-invariant left (resp. right) fuzzy ideals of R and the set of all left (resp. right) fuzzy ideals of S.

Proof. Straightforward in view of Theorem 1, Theorem 3 and the following results:

- (i) $f^{-1}(f(\mu)) = \mu$, where μ is any f-invariant left (resp. right) fuzzy ideal of R;
- (ii) $f(f^{-1}(\nu)) = \nu$, where ν is any left (resp. right) fuzzy ideal of S.

THEOREM 5. Let $f:R\to S$ be an onto homomorphism of nearrings and let μ and ν be left (resp. right) fuzzy ideals of R and S, respectively such that

$$\operatorname{Im}(\mu) = \{\alpha_0, \alpha_1, ..., \alpha_n\} \text{ with } \alpha_0 > \alpha_1 > ... > \alpha_n, \text{ and}$$
$$\operatorname{Im}(\nu) = \{\beta_0, \beta_1, ..., \beta_m\} \text{ with } \beta_0 > \beta_1 > ... > \beta_m.$$

Then

(i) $\operatorname{Im}(f(\mu)) \subset \operatorname{Im}(\mu)$ and the chain of level left (resp. right) ideals of $f(\mu)$ is

$$f(R_{\mu}^{\alpha_0}) \subset f(R_{\mu}^{\alpha_1}) \subset ... \subset f(R_{\mu}^{\alpha_n}) = S.$$

(ii) $\text{Im}(f^{-1}(\nu))=\text{Im}(\nu)$ and the chain of level left (resp. right) ideals of $f^{-1}(\nu)$ is

$$f^{-1}(S_{\nu}^{\beta_0}) \subset f^{-1}(S_{\nu}^{\beta_1}) \subset \ldots \subset f^{-1}(S_{\nu}^{\beta_m}) = R.$$

S. M. Hong, Y. B. Jun and H. S. Kim

Proof. (i) Since $f(\mu)(y)=\sup_{x\in f^{-1}(y)}\mu(x)$ for all $y\in S$, obviously $\mathrm{Im}(f(\mu))\subset\mathrm{Im}(\mu)$. Note that for any $y\in S$,

$$\begin{split} y \in f(R_{\mu}^{\alpha_i}) &\Leftrightarrow \text{there exists } x \in f^{-1}(y) \text{ such that } \mu(x) \geq \alpha_i \\ &\Leftrightarrow \sup_{z \in f^{-1}(y)} \mu(z) \geq \alpha_i \\ &\Leftrightarrow f(\mu)(y) \geq \alpha_i \\ &\Leftrightarrow y \in S_{f(\mu)}^{\alpha_i}. \end{split}$$

Hence $f(R^{\alpha_i}_{\mu}) = S^{\alpha_i}_{f(\mu)}$ for $i = 0, 1, \dots, n$, and therefore the chain of level left (resp. right) ideals of $f(\mu)$ is

$$f(R_{\mu}^{\alpha_0}) \subset f(R_{\mu}^{\alpha_1}) \subset \cdots \subset f(R_{\mu}^{\alpha_n}) = S.$$

(ii) Since $f^{-1}(\nu)(x) = \nu(f(x))$ for all $x \in R$ and since f is onto, we have $\text{Im}(f^{-1}(\nu)) = \text{Im}(\nu)$. Note that for all $x \in R$,

$$x \in f^{-1}(S_{\nu}^{\beta_{i}}) \Leftrightarrow f(x) \in S_{\nu}^{\beta_{i}}$$

$$\Leftrightarrow \nu(f(x)) \ge \beta_{i}$$

$$\Leftrightarrow f^{-1}(\nu)(x) \ge \beta_{i}$$

$$\Leftrightarrow x \in R_{f^{-1}(\nu)}^{\beta_{i}},$$

so that $f^{-1}(S_{\nu}^{\beta_i}) = R_{f^{-1}(\nu)}^{\beta_i}$ for all $i = 0, 1, \dots, m$. Hence the chain of level left (resp. right) ideals of $f^{-1}(\nu)$ is

$$f^{-1}(S_{\nu}^{\beta_0}) \subset f^{-1}(S_{\nu}^{\beta_1}) \subset \cdots \subset f^{-1}(S_{\nu}^{\beta_m}) = R.$$

This completes the proof.

LEMMA 2. Let μ and ν be fuzzy left (resp. right) ideals of R and f(R) respectively, where $f: R \to S$ is a near-ring homomorphism. Then $f(\mu)(0) = \mu(0)$ and $f^{-1}(\nu)(0) = \nu(0)$.

Proof. Straightforward.

Let ρ and δ be two fuzzy sets in a near-ring R. The product $\rho \circ \delta$ is defined by

$$\rho \circ \delta(x) := \left\{ \begin{array}{l} \sup\limits_{x=yz} \{\min\{\rho(y),\delta(z)\}\}, \\ 0 \quad \text{if x is not expressible as $x=yz$.} \end{array} \right.$$

A fuzzy ideal μ of a near-ring R is said to be *prime* [1] if μ is not a constant function and for any fuzzy ideals ρ and δ of R, $\rho \circ \delta \subset \mu$ implies $\rho \subset \mu$ or $\delta \subset \mu$.

For a fuzzy left (resp. right) ideal δ of a near-ring R, let

$$\delta_0 := \{x \in R | \delta(x) = \delta(0)\}.$$

LEMMA 3 ([1, Theorem 3.7]). Let δ be a fuzzy prime ideal of a near-ring R. Then δ_0 is a prime ideal of R.

PROPOSITION 2. Let $f: R \to S$ be a near-ring homomorphism and let δ be a fuzzy left (resp. right) ideal of R. Then $f(\delta_0) \subseteq f(\delta)_0$, with equality if δ has the sup property.

Proof. Let $x \in \delta_0$. Then

$$f(\delta)(f(0)) \ge f(\delta)(f(x)) \ge \delta(x) = \delta(0) = f(\delta)(f(0)),$$

and so $f(\delta)(f(x)) = f(\delta)(f(0)) = f(\delta)(0)$. Hence $f(x) \in f(\delta)_0$ or $f(\delta_0) \subseteq f(\delta)_0$. Assume that δ has the sup property and let $x \in R$ be such that $f(x) \in f(\delta)_0$. Then

$$\delta(0) = f(\delta)(f(x)) = \sup\{\delta(y)|f(y) = f(x)\} = \delta(y)$$

for some $y \in R$ such that f(y) = f(x) since δ has the sup property. Thus $y \in \delta_0$, and so $f(x) = f(y) \in \delta_0$. This completes the proof.

THEOREM 6. Let μ be a fuzzy prime ideal of a near-ring R. Then $|\text{Im}(\mu)| = 2$, i.e., μ is two-valued. In particular, $\mu(0) = 1$.

Proof. Note that $|\operatorname{Im}(\mu)| \geq 2$ since μ is not constant. Assume that $|\operatorname{Im}(\mu)| \geq 3$. Let $\mu(0) = \alpha$ and $\lambda = \operatorname{glb}\{\mu(x)|x \in R\}$. Then there exist $\gamma, \beta \in \operatorname{Im}(\mu)$ such that $\lambda \leq \gamma < \beta < \alpha$. Let ρ and δ be fuzzy sets in R such that $\rho(x) := \frac{1}{2}(\gamma + \beta)$ for all $x \in R$ and

$$\delta(x) := \left\{ egin{array}{ll} \lambda & ext{if } x
otin R^{eta}_{\mu}, \ lpha & ext{otherwise}. \end{array}
ight.$$

Clearly, ρ is a fuzzy ideal of R. We now prove that δ is a fuzzy ideal of R. Let $x,y \in R$. If $x,y \in R^{\beta}_{\mu}$, then $x-y \in R^{\beta}_{\mu}$ and $\delta(x-y) = \alpha = \min\{\delta(x), \delta(y)\}$. If $x \in R^{\beta}_{\mu}$ and $y \notin R^{\beta}_{\mu}$ (or $x \notin R^{\beta}_{\mu}$ and $y \in R^{\beta}_{\mu}$) then $x-y \notin R^{\beta}_{\mu}$ and

$$\delta(x - y) = \lambda = \min\{\delta(x), \delta(y)\},\$$

since

$$\delta(x)$$
 (or $\delta(y)$)= $\alpha > \lambda = \delta(y)$ (or $\delta(x)$).

If $x \notin R^{\beta}_{\mu}$ and $y \notin R^{\beta}_{\mu}$ then $\delta(x) = \delta(y) = \lambda$ and so

$$\delta(x-y) \ge \lambda = \min{\{\delta(x), \delta(y)\}}.$$

Hence $\delta(x-y) \geq \min\{\delta(x), \delta(y)\}\$ for all $x,y \in R$. Similarly, we know that

$$\delta(xy) \ge \min\{\delta(x), \delta(y)\}\ \text{for all } x, y \in R.$$

Hence δ is a fuzzy subnear-ring of R. For any $y \in R$, if $y \in R^{\beta}_{\mu}$ then $xy \in R^{\beta}_{\mu}$ for all $x \in R$, and so $\delta(xy) = \alpha = \delta(y)$. If $y \notin R^{\beta}_{\mu}$, then $\delta(xy) \geq \lambda = \delta(y)$. Hence $\delta(xy) \geq \delta(y)$ for all $x, y \in R$. Let $x, y \in R$. If $x \in R^{\beta}_{\mu}$ then $y + x - y \in R^{\beta}_{\mu}$ and $\delta(y + x - y) = \alpha = \delta(x)$. If $x \notin R^{\beta}_{\mu}$, then $\delta(y + x - y) \geq \lambda = \delta(x)$. This proves that δ is a fuzzy left ideal of R. Let $x, y, z \in R$. If $z \in R^{\beta}_{\mu}$, then $(x + z)y - xy \in R^{\beta}_{\mu}$ and $\delta((x + z)y - xy) = \alpha = \delta(z)$. If $z \notin R^{\beta}_{\mu}$, then $\delta(z) = \lambda \leq \delta((x + z)y - xy)$. Hence $\delta((x + z)y - xy) \geq \delta(z)$ for all $x, y, z \in R$, and therefore δ is a fuzzy ideal of R. Now we show that $\rho \circ \delta \subseteq \mu$. Consider the following cases:

Case (i) x = 0. Then

$$\rho\circ\delta(x)=\sup_{x=yz}\left\{\min\{\rho(y),\delta(z)\}\right\}\leq\frac{1}{2}(\gamma+\beta)<\alpha=\mu(0).$$

Case (ii) $0 \neq x \in R^{\beta}_{\mu}$. Then $\mu(x) \geq \beta$, and

$$ho\circ\delta(x)=\sup_{x=yz}\{\min\{
ho(y),\delta(z)\}\}\leqrac{1}{2}(\gamma+eta)$$

Case (iii) $0 \neq x \notin R^{\beta}_{\mu}$. For any $y, z \in R$ such that x = yz, we have $z \notin R^{\beta}_{\mu}$. Thus $\delta(z) = \lambda$ and so

$$\rho \circ \delta(x) = \sup_{x=yz} \{ \min \{ \rho(y), \delta(z) \} \} = \lambda \le \mu(x).$$

Thus in each case, $\rho \circ \delta(x) \leq \mu(x)$ or $\rho \circ \delta \subseteq \mu$.

Next we show that neither $\rho \subseteq \mu$ nor $\delta \subseteq \mu$. We can find $x \in R$ such that $\mu(x) = \gamma$. Then

$$\rho(x) = \frac{1}{2}(\gamma + \beta) > \gamma = \mu(x).$$

Hence $\rho \nsubseteq \mu$. We also know that $\mu(y) = \beta$ for some $y \in R$. It follows that $y \in R^{\beta}_{\mu}$ and $\delta(y) = \alpha > \beta = \mu(y)$. Therefore $\delta \nsubseteq \mu$. This shows that μ is not a fuzzy prime ideal of R, which is a contradiction. Hence $|\mathrm{Im}(\mu)| = 2$. Now let $|\mathrm{Im}(\mu)| = \{\alpha, \gamma\}$ and $\gamma < \alpha$. Then $\mu(0) = \alpha$ since $\mu(0) \geq \mu(x)$ for all $x \in R$. Assume that $\alpha \neq 1$. Then there exists $\beta \in [0,1]$ such that $\alpha < \beta \leq 1$. Let ρ and δ be fuzzy sets in R such that $\rho(x) := \frac{1}{2}(\alpha + \gamma)$ for all $x \in R$ and

$$\delta(x) := \left\{ egin{array}{ll} eta & ext{if } x \in \mu_0, \ \gamma & ext{otherwise.} \end{array}
ight.$$

Clearly ρ is a fuzzy ideal of R. Since μ_0 is an ideal of R, δ is a fuzzy ideal of R. It can be easily checked that $\rho \circ \delta \subseteq \mu$. Since $\mu(0) = \alpha < \beta = \delta(0)$, we have $\delta \not\subseteq \mu$. Note that there exists $x \in R$ such that $\mu(x) = \gamma < \frac{1}{2}(\alpha + \gamma) = \rho(x)$, so that $\rho \not\subseteq \mu$. This is a contradiction to the hypothesis. Hence $\mu(0) = 1$, ending the proof.

ACKNOWLEDGEMENT. The authors are deeply grateful to the referee for the valuable suggestions.

S. M. Hong, Y. B. Jun and H. S. Kim

References

- [1] S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Sets and Sys. 44 (1991), 139-146.
- [2] P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. and Appl. 84 (1981), 264-269.
- [3] V. N. Dixit, R. Kumar and N. Ajal, On fuzzy rings, Fuzzy Sets and Sys. 49 (1992), 205-213.
- [4] S. D. Kim and H. S. Kim, On fuzzy ideals of near-rings, Bull. Korean Math. Soc. 33 (1996), 593-601.
- [5] R. Kumar, Fuzzy irreducible ideals in rings, Fuzzy Sets and Sys. 42 (1991), 369-379.
- [6] _____, Certain fuzzy ideals of rings redefined, Fuzzy Sets and Sys. (1992), 251-260.
- [7] D. S. Malik, Fuzzy ideals of artinian rings, Fuzzy Sets and Sys. 37 (1990), 111-115.
- [8] J. D. P. Meldrum, Near-rings and their links with groups, Pitman, Boston (1985).
- [9] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.
- [10] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.

SUNG MIN HONG AND YOUNG BAE JUN, DEPARTMENT OF MATHEMATICS, GYEONG-SANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA *E-mail*: ybjun@nongae.gsnu.ac.kr

HEE SIK KIM, DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, SEOUL 133-791, KOREA

E-mail: heekim@email.hanyang.ac.kr