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THE PALEY-WIENER THEOREM BY THE HEAT
KERNEL METHOD

Sunmi LEE AND SOON-YEONG CHUNG

ABSTRACT. We use the heat kernel method to prove newly the Paley-
Wiener theorem for the distributions with compact support.

1. Introduction

Concerning the Schwartz distribution theories, one of the most famous
theorems is the Paley - Wiener theorem for the distributions with com-
pact support which characterizes the functions or generalized functions
via the growth at infinity and the regularity of their Fourier transform.

Generally speaking, it is easy to pass from the support information
about a distribution f to the analyticity condition on their Fourier trans-
form f, but it is rather tricky to proceed in the reverse direction.

The first step to this was introduced by N. Wiener and R. Paley[12] for
the first time as for the case of functions, and extended to the distribu-
tions[10], to the ultradistributions by Komatsu([8] under some conditions.

Recently, T. Matsuzawa[9] introduced the heat kernel method to char-
acterize hyperfunctions with compact support and Gevrey ultradistribu-
tions with compact support. This method has been developed very much
to study various generalized functions{2, 3, 4].

The purpose of this paper is to apply the heat kernel method to prove
newly the Paley - Wiener Theorem for distributions with compact sup-
port.
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2. Preliminaries

Throughout this paper we use a conventional multi-index notations
such as; |a| = a1+ -+, D* =D{*--- D&, D; = —z‘a%_,j =1,...,n,

i =+—1, and

gle
O f = —a—f""a—
6.’1)11 ‘e azn"
for an n - tuple @ = (@, - - - , 0,) € N where Ny is the set of nonnegative

integers.

First we introduce the distributions and the distributions with com-
pact support.

DEFINITION 2.1. (i) For an open set X in R" a distribution 7" on X
is a continuous linear functional on C§°(X) i.e. for every compact subset
K c X, there exist a nonnegative integer N and a positive constant M
such that

(T, )| < M sup |6°¢(z)], ¢ € C*(K).
zekK
By D’'(X) we denote the set of all distributions on X.
(ii) A distribution T" with support in a compact set K is a continuous
linear functional on C*(R") i.e there exists a positive number N such
that for every € > 0 we have

(2.1) (T, )| < Ce sup |0°¢(z)l, &€ Ce(R")

267(5
where K, = {z € R* dist(z,K) < €} and C, is a positive constant
depending only on € > 0. By £'(K) we denote the set of all distributions
with support in a compact subset K.

DEFINITION 2.2. We say that a function ¢ € C*°(R") is rapidly de-
creasing at infinity if

lim |2%6%¢(z)| =0

|z|—o00
for all pairs of multi-indices o and f3.
We shall use S to denote the set of all rapidly decreasing functions
and S'(R") to denote the set of all continuous linear functionals 7' on
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the space S with respect to semi-norm P, s(¢) = sup |z20°¢(z)|, or
z€R?

equivalently Py (@) = sup(1 + |z|?)V|8°¢(z)| i.e. there are a constant
C > 0 and a nonnegative integer N such that

(T, ¢)| < C Y suplz®d®gl, ¢ € SR™).

lal,|BISN

The members of S'(R™) are called tempered distributions.
For a subset E of R™ we define

HE(&) = SUp(IL‘,g), € €R".
z€E
One calls Hg the supporting function of E. It is easy to see that
Hp(§+n) < Hg(§) + He(n)

and
HE(tﬁ) = tHE(E), t _>_ 0
for any € and 7 in R™ (see [7] for this).

3. The heat equation and the heat kernel

In this section we introduce the heat kernel and some basic properties
of the solutions of the heat equation. It is well known that the locally
integrable function

_n _=l?
E(z,t) = (4mt)~2 exp[—Z-] t >0,
0 t<0,
satisfies (0, — A)E = 0 in R™ x (R \ {0}), where |z[?> = 22 + ... + 2?
for z € R™. In fact, E(z,t) is a fundamental solution of heat operator
at -4 , that iS,
(0 — D)E(z,t) = 8(z,t).

For the later use, we recall some fundamental properties of the heat
kernel.

LEMMA 3.1. E(-,t) is an entire function in C* of order 2 for each
t > 0. We have the following properties on E:
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(i) We have
(3.1) E(z,t)dz =1, t>0.
Rn
(ii) We have that for each 6 > 0 and m > 0

(3.2) / 1+ |y|2)mE(y,t) dy—0, ast—0".
[yl=8

(ii1) There are positive constants C and a such that for eacht > 0
alml2]
4t v

where a can be taken as close as desired to 1 and 0 < a < 1;

(3.3) |D2E(x, )] < Clol+2 "3 g1} exp| -

LEMMA 3.2. For every ¢ € S(R"), let

Un(z,t) = / E(z~y,t)é(y)dy, t > 0.
Rn
Then Uy(z,t) — ¢(z) in S(R*) ast — 0%.

Proof. First, it is easy to see that Uy(:,t) is infinitely differentiable in
R" for each t > 0. Now to show the convergence let ¢ € S(R"). In fact,
it suffices to show that for every N > 0 and multi-index 3

su!g(l + |2V |8°Ug(z, t) — Pd(z)| — 0

ast— 0%,
Applying the mean value theorem and Peetre’s inequality

L+ ER) 1+ )™ < 2611 + ¢ — nf)le
for s € R and £, 77 € R™ we obtain
(34) (1+ [2[)V|8Pd(z — y) — (=)
< (142N |[VePo(z — 6y)| - Iyl
< CA+ |zP)¥(1 + |z - 6y*) ™V - [y
<C2Y(1+yP)V - lyl, =zyeR®
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for a constant C' = C(N, ) and 0 < § < 1. Then for each N > 0 and
we can write

(3.5)  (1+|z)N°Uy(z, t) — O ¢()|

=1+ =)V . E(y,t) [0°¢(z — y) — 8°¢(x)] dy

< / E@y,t)(1+ 2]V |6°¢(z — y) — 0°¢(z)| dy
-

<2 /R E(y, )1+ Jy»)N - lyldy

Now let § be a small positive number. The last integral in (3.5) can be
written as

(36) ﬁn E(y,t)(l + |y|2)N . |y|dy
= /H<5 E(y,)(1+ )" - Iy!dy+/ E(y, t)(1 + )" - lyldy

lyl>8

IA

6(1+ )" + /I B, Dy
y|=

In view of Lemma 3.1.(ii) the last integral becomes arbitrarily small as
t — 0*. This completes the proof. a

Let u € £'(K) . Then the function
(3.7) U(,t) = w(B@—y,t) 2R, t >0,
is well defined since E(z — -,t) € S for each z € R* and ¢ > 0.

THEOREM 3.3. Let u € &(K) . Then U(z,t) = u,(E(z — y,t)) is
an infinitely differentiable function in R™*! = R™ x (0, 00) satisfying the
following condition:

(3.8) (0, — A)U(z,t) = 0 in R
and for every € > 0 there are positive constants C, and N such that

dxst(a: K.)?

(39)  U(z,t) < Ct™™F exp[~ 2=, (z,t) €RIM
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Also, U(z,t) — u as t — 0% in the following sense that

(3.10) u($) = lim U(z,t)¢(z)dz, ¢ e SR .

t—0+ RrR»

Conversely, every C* function U(z,t) defined in R™*! satisfying condi-
tions (3.8) and (3.9) can be expressed in the form

U(III,t) = uy(E(m - Y t))) S Rn7t > 0.
with a unique element u € £'(K) .

Proof. Let u € £'(K) and U(z,t) = u,(E(z —y,t)). Then U(z,t) is
well defined and infinitely differentiable for each ¢ > 0 and also satisfies
the heat equation (3.8). The fact that u € £'(K) means that for any
€ > 0 there exist positive constants C, and N such that

U(z,t)| < Cesup |87 E(z —y,t)| .
ll<N

yeKe

Thus from (3.3) we have

. 2
U] < C.OMM2 N!%t“l*f”—’exp{————“d‘s"if”{f) )

n-N) adist(z, Ke)z]

<

= e N, 12 [ At
This gives (3.9) by taking @ = ; for convenience. Now to prove (3.10)
let ¢ € S(R"). Then we have for each ¢t > 0,

/U(z,t) d(z)dz = uy(/ E(z —y,t) ¢(z) dz) = u(Uy(y, t))

by taking the limit of the Riemann sum of the first integral. Then it
follows from Lemma 3.2 that

u(¢) = lim Uz, t)p(z)dz, ¢e SR,

t—0+ R"
which proves (3.10).

To prove the converse we assume that U(z,t) € C®(R"*!) satisfies the
conditions (3.8) and (3.9). For a positive integer m we define a function
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f(t) as

o= { e ez

Multiplying f with a suitable C* function with compact support it is
possible to get the following relation

(3.11) (%)mv(t) = 8(t) + w(t)

for every t € R for suitable functions v(t) and w(t) such that v(t) = f(¢)

for —oo <t <1,v(t) = 0for2<t< oo, w(t)e CPR), suppw C

(N+n

(1,2] and 4(t) is the Dirac delta function. Take m = [——-5—)] + 2 where

N is a constant given in (3.9) and consider the following function
00
G(z,t) = / U(z,t+s)v(s)ds .
0

Then it is easily seen that G(z,t) is a bounded and continuous function
on R™! = {(z,t)|z € R®, t > 0} satisfying the heat equation

(3.12) (gz — A)G(z,t) =0 in R .
Therefore, it follows from (3.11) and (3.12) that in R?*!
(3.13) (-A)"G(z,t) = (—g—t)'"G(x,t)
= U(z,t) + /OmU(r,t+s)w(s)ds X

If we put

H(z,t) = —/OwU(z,t+s)w(s)ds,
then H(z,t) is also a C* solution of heat equation in R7}*' which is
continuously extended to R"*! . Furthermore, if we define g(z) = G(z,0)

and h(z) = H(z,0) then g(z) and h(x) are continuous and bounded on
R” . In view of the well known uniqueness theorem of the solutions of
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the heat equation we have
61 Gt = [Be-uhowdy = g=E)a),

H(z,t) = / E(z — ) hiy) dy = (h B)(z, )

where * denotes the convolution with respect to the z variable.
Now we define u as

(3.15) u = (—A)"g(z) + h(z) .

Since g and h are continuous it is easy to see that u is a distributions on
R". Then (3.14) implies that

(ux E)(z,t) = (=A)"(g*E)(z,t) + (h*E)(z,t)
= (=A)"G(z,t) + H(z,t)
U(z,t) .
Thus in view of (3.9) and (3.10) we can see that u is a distribution with
compact support. Hence it remains to show that supp u is contained in

K. In fact, for every ¢ € S(R™) with supp¢ N K = 0, the conditions
(3.9) and (3.10) enable us to have

|(u,4)] = 0.
This implies that u belongs to £&'(K). Since the uniqueness of such u €
E'(K) is obvious the proof is completed. O

REMARK 3.1. The condition (3.9) in Theorem 3.3 can be somewhat
weakened as follows: For every € > 0

U(z,8)] < C.t~"F" inRY .
and for every § > 0
U(z,t) — 0
uniformly in {z € R" : dist(z,K) >} as t — 0.

In fact, in the proof above we have proved the following structure
theorem for the distributions with compact support:

448



The Paley—Wiener theorem by the heat kernel method

COROLLARY 3.4. Let K be a compact subset in R*. Ifu € £'(K) then

there is a number m > 0 and there are bounded continuous functions g(z)
and h(z) such that

u = A"g(z) + h(z),

where g(z) € C*(R"\ K) , h(z) € C®(R") and A™g(z) + h(z) =
0in R*\ K.

4. A new proof of the Paley - Wiener theorem

For u € £'(K) its Fourier transform 4 is defined by 4(£) = (ug, e7%¢),
£ € R™. Then it is easy to see that 4(£) is an infinitely differentiable
function which can be extended to an entire function in C" (See (1, 5, 7,
10)).

We are now in a position to prove the Paley—Wiener theorem in a new
method depending on the idea of Theorem 3.3, which is a main theorem
of this paper.

THEOREM 4.1. Let K be a convex compact subset of R® with sup-
porting function Hg. If F((} is an entire function satisfying

(4.1) IF(O)] < C(1+ KDY exp[Hx (ImQ)),

for all { = £+ in € C" and for some N > 0, then F(() is the Fourier-
Laplace transform of a unique element in £'(K).

Proof. Let F({) be an entire function in C" satisfying property (4.1).
Now, we define a function U((,t) on C* x (0, 00) as follows:

(4.2) U(¢,t) = F(¢)exp(—t¢?).

Then for each t > 0 we have U(¢,t) = F(€)exp(—t|é]?) € S(RE). If we
define

43) Uz, t) = (2m)" / SXT(¢,8)dE, T € R, > 0
then U(z,t) € C®°(R"*!) and satisfies
(4.4) (-gt——'A)U(:c,t) =0in zeR} t>0.
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In view of (4.1) we have
Ul < o [ e lde
= en™ [ PO i
< o @ jgte ag

_ (N ke
- c/m;(k)lae ¢
N

N N 00
. n+k—1_—tr?
- ¢y <k>/0 /S'r e du dr
k=0
N oo
= CZ (j;,) wn—l/ Tn+k—le—tr2 dr
k= 0

0

where £ = rw, r > 0, |w| =1 and w,_; denotes the surface area of S™!.
An elementary calculation gives

00
/ ,’,n+k—le—tr2drz 135(2m—1)\/7—l:t_2_mf:l
0

2m+l

whenn+k —1=2m > 0 and

o0 1
+k—-1_—tr? _ m:
/0 rtTR e T dr = SpmiT
whenn+k—1=2m+ 1.
Hence we have the estimate
(4.5) U(z,t)| <Cnt™, z€R",t>0

for some integer N > 0. From this we can see that the initial value
U(z,0+) defines a distribution in R".

Now we are going to find more detailed estimate which gives an in-
formation about support. By shifting the integration in (4.3) into the
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complex domain, we have

U(z,1) = (2m)™" / (¢ 1 in, 1) d

n

for an arbitrary fixed vector n € R". Estimating the integral by using
(4.1) and (4.5), we have for every € > 0

(4.6)  |U(x,1)]
C exp[Hg (Im¢) ~ zn + t|nf’] /R"(l + €DV (L + |n) Ve tel de
vt~ exp[Hy (Im¢) — zn + t|nl*)(1 + [n])"

IA

IA

For z¢ ¢ K. and yp € 0K choose a vector ng = ﬁ—g—:—-z.%' € R™ such that

Hy = {z{ {z,m0) = (o, m)} , Hi = {z| (x, ) = (y0,m0) + €}.
Then it follows that

{0, m0) — (¥, m0) > €.

for every y € K. Namely, for every x ¢ K, there is 7y € R" such that
((L‘, 770> 2 supy€K<y7 770) +€.
Taking n = %770 in (4.6) it follows that

|U(z,t)] < Cfvt'N'exp[—%(xno — Hk(m))]

which is reduced to the condition (3.9). By Theorem 3.3 , there exists
a unique element v € &'(K) such that U(z,t) = u,(E(z — y,t)) and
U(z,t) — u in the sense of (3.10). Hence it remains to show that F({) is
the Fourier — Laplace transform of u as an element of £'(K). By F and
F~! we denote the Fourier transform and the Fourier inverse transform
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respectively. Then for each ¢ € S(R™) we have

(U(z,1),¢(z)) = (FHUED),d(@) = (Ulz,8), F(¢))
= (F(z)exp(~tlz]*), F(¢))
= (F(z),exp(-tz[)F'(¢))
= (F(z), F(E&t)F ()
= (F(z), F(E(&,1)(2m) " F($(-£)))
= (F(2),(2m)"F(E(£,1) * ¢(~£)

)
= (F(F(€)), (2m)"E(z, t) * ¢(—z))
Therefore, in view of Lemma 3.2 we have

w¢) = lim(U(z1),6())
tl—]}(a»<]:(F(E))’ (27(')_"U¢(—117, t))
((2m)"F(F), (—x))
= (FTUF),¢),

which implies that F(u) = F. This completes the proof. d
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