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NOTES ON EXTRINSIC SPHERES
U-HANG K1* AND SADAHIRO MAEDA

ABsTRACT. The main purpose of this paper is to give a character-
ization of a totally geodesic Kaehler submanifold M of a Kaehler

manifold M by observing the extrinsic shape of particular circles of
the submanifold M.

0. Introduction

In submanifold theory totally geodesic submanifolds are the simplest
examples. They are characterized by the condition that all geodesics of
the submanifold are geodesics in the ambient space. Here we study to-
tally umbilic submanifolds with parallel mean curvature vector. These
submanifolds M’s have a property that all circles of the submanifold
M are circles in the ambient space M. They are usually called eztrin-
sic spheres of M. Nomizu and Yano (5] proved that M is an extrinsic
sphere of M if and only if there exists some positive constant k and all
circles of curvature k on M are circles on M.

In this paper we first improve this result. In the latter half of this pa-
per we pay particular attention to extrinsic Kaehler submanifolds M’s
of an arbitrary Kaehler manifold M. Needless to say, these extrinsic
submanifolds M’s are necessarily minimal so that they are totally geo-
desic in M. Motivated by this fact, we shall provide a characterization
of a totally geodesic Kaehler submanifold M in a Kaehler manifold M
by observing the extrinsic shape of particular circles of the submanifold
M (cf. Theorem).
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1. Holomorphic circles

We first recall the definition of circles. A smooth curve v = «(s),
parametrized by arclength s, in a Riemannian manifold M is called a
circle of curvature k if there exist a field Y = Y (s) of unit vectors along
~ and a positive constant k satisfying

(L.1) {Vﬁ,'y kY .
where 4 denotes the unit tangent vector of v and V the covariant dif-
ferentiation. As a matter of course any Riemannian manifold has many
circles. In fact, for an arbitrary point z, an arbitrary orthonormal pair
(u,v) of vectors at « and an arbitrary positive number k, there exists lo-
cally a unique circle v = «(s) with initial condition ¥(0) = z, ¥(0) = u
and Y (0) = v.

We next consider some particular circles in a Kaehler manifold. Let
v be a circle in a Kaehler manifold M (with metric {, ) and complex
structure J). Then we see from (1.1) that (¥, JY) is constant along ~.
Hence it makes sense to define a holomorphic circle in M as a circle =
satisfying that 4 and Y span a holomorphic plane, that is, Y = J¥ or
Y = —J%. So, if 7 is a holomorphic circle, then (1.1) reduces to

(1.2) Vi =kJy or Viy=—kJ¥.

We can interpret such circles in terms of physics (see [1]). Holomorphic
circles in Kaehler Geometry may play a similar role of geodesics in Real
Riemannian Geometry.

The first author wishes to express his gratitude to TGRC-KOSEF
who gave him the opportunity to study at Shimane University.

2. Extrinsic spheres

Our aim here is to prove the following which is an improvement of
the well-known result of Nomizu and Yano.

PROPOSITION. Let M™,n 2 2, be a connected submanifold of a
Riemannian manifold M™. Then M™ is an extrinsic sphere in M™ if
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and only if for some positive constant k there exists an orthonormal
basis {v1,...,vn} at each point p of M™ satisfying the following three
conditions:
(i) Every circle 7;;(s) of curvature k in M™ with v;;(0) = p, 4:;(0) = v;
and (V,;%i5())s=0 = kv; (1 £i# j S n) is a circle in M™.
(ii) Every circle 7;j(s) of curvature k in M™ with 7,;(0) = p, 7:;(0) = v;
and (V3,;7:5(s))s=0 = —kv; (1 £ 1 # j £ n) is a circle in M™.
(iii) Every circle 6;;(s) of curvature k in M™ with 6;;(0) = p, 4;;(0) =
(v +v;)/V2 and (V;,_6;5(s))s=0 = k(vi —v;)/V2 (1 Si#jSn)isa
circle in M™.

Proof. Let 7v;; = ~;;(s) be a circle in M™ satisfying condition (i).
Then from (1.1) we know that -y;; yields

(2.1) V3 Vi + (Vi Vigs Vou i Vi = 0.
By hypothesis ;; is a circle in the ambient space M ™ so that it shows
(2.2) V2 i + (Vi Vigs Vi i) 5 = 0.

Equations (2.1) and (2.2), together with the formulae of Gauss VxZ =
VxZ +0(X,Z) and Weingarten Vx§ = Dx§ — A¢X, yield

(2.3) Ay i Vi = (0 (Vigs ¥iz), 0 (Fig, ¥ig)) Vi
and
(2'4) 0-(;771.7" v"/ij'yij) + D"Yz'j (0'('71']'7;71'1')) =0.

At s =0 in (2.4), we get, noting (V4,,4:;)(0) = kv;,

(2.3) o(vi,v;) = (=1/k) Dy, (0(vi,v5)) (1 S2#j S n).
Similarly, condition (ii) in Proposition tells us

(26)  o(vi,v) = (1/B)Du(o(iv)) (1Si#j<n).
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Hence, Equations (2.5) and (2.6) show
(2.7) o(vi,v;) =0 (1Si#j<n).

Exchanging ¢ for j in (iii) in Proposition, we have similarly

v+ v U — vy
o =0
(745

so that
(2.8) o(vi,vi) = o(v;,v;) (1 Si#j<n).

From (2.7) and (2.8) we know that M™ is totally umbilic in M™, since
p is any point of M™. This, combined with Equation (2.4), implies

(2'9) D"Yij (U(;Yi:i’;ﬁj)) = 0.

Here, again by using the fact that M™ is totally umbilic in M ™ at
s = 0 in (2.9) we find that D,,h =0 (1 £ 7 < n) at any point p of M,
where b is the mean curvature vector of M in M. This implies that the
mean curvature vector of M™ in M™ is parallel.

The converse is trivial from [5]. a

3. Main result

THEOREM. Let M be an n-dimensional Kaehler submanifold of an
(n + p)-dimensional Kaehler manifold M (with complex structure J).
Then M is totally geodesic in M ifand only if for some positive constant
k there exists such an orthonormal basis {v1,--- ,Vpn,JU1, -+ ,Jup} at
each point p of M that all holomorphic circles v;; of curvature k in
M through p satisfying that the initial vector +;;(0) is in the direction
v; +v; (1 ¢ < j < n) are circles in M.
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Proof. We denote by o the second fundamental form of the subman-
ifold M in M. Then it satisfies (cf. [6])

(3.1) o(JX,Y) = o(X,JY) = Jo(X,Y).

Let vii (1 < ¢ < n) be circles of M satisfying V4, 4ii = kJ4:: with
7:i(0) = p and 4;:(0) = v;. By hypothesis they satisfy

(3.2) V2 A =~k
for some positive constant k;. On the other hand, we have
Vietis = Vs + 0 (i ¥is)
= kJ%ii + o (Yiiy Yis)-

Note that VJ = 0. Hence
(3.3)

V2 Aii = kI (Vo i + 0 (%, 9i5)) ~ Ao e )it + Dine (0 (s ¥is))-
Comparing the normal component of (3.2) and (3.3), at s = 0 we find
(3.4) Dy, (o(vi,vi)) + kJ - o(vs,v;) = 0.

Applying the same discussion as above to the circle «;; in M satisfying
Vi = —kJ3i with 7;4(0) = p and 4;5(0) = v;, we get

(3.5) D, (o(vs,vi)) — kJ - o(vi,v3) = 0.

It follows from (3.4) and (3.5) that

(3.6) o(vi,v;) =0 (1 <7< n).

Similarly, considering the circles v;; (1 € ¢ < j £ n) in M satisfying

Vi35 = kEJYij or Vi, %5 = —kJ4;; with 4:;(0) = p and 4;;(0) =
(v; + v;)/+/2, we obtain

(3.7) o (vi+vj v; + vj

N AR, )=0(1Si<.j§n).
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It follows from (3.1), (3.6) and (3.7) that the submanifold M is geodesic
at the point p. Thus we get the conclusion. a

Finally we recall geometric properties of holomorphic circles on some
Kaehler manifolds (for details, see (2, 3, 4]).

(1)

3)

An n-dimensional complex projective space CP™(c) of constant
holomorphic sectional curvature ¢ can be imbedded into CP™*?(c)
as a totally geodesic Kaehler submanifold. Every holomorphic

circle in CP™(c) is a closed curve with length \/%% which lies

on the totally geodesic Kaehler submanifold CP*(c) of CP"(c).
An n-dimensional complex hyperbolic space CH"(c) of con-
stant holomorphic sectional curvature ¢ can be imbedded into
CH™*P(c) as a totally geodesic Kaehler submanifold. A holo-
morphic circle v (of curvature k) in CH™(c) is not necessar-
ily closed. The holomorphic circle v is closed if and only if

k > +/|c|. Its length is \/%,%

CP!(c) x CP(c) can be imbedded into a complex Grassman-
nian manifold G(C*) (of 2-dimensional complex linear sub-
spaces in C%) with maximal sectional curvature ¢ as a totally
geodesic Kaehler submanifold. A holomorphic circle v = ¥(s)
(of curvature k with initial unit vector ¥(0) = (Xi,X3)) in
CP!(c) x CP!(c) is not necessarily closed. When X7 = 0 or
X2 = 0, the holomorphic circle 7 is a closed curve with length
ﬁ_ﬁ. When X; # 0 and X3 # 0, the holomorphic circle 7 is

closed if and only if %;i—i%%“; is rational. Its length is the
. 2 2
least common multiple of m and m Here

for two positive real numbers «, 3, when the ratio % is rational,
we define the least common multiple of o and 3 as the minimal
value of the set {an|n=1,2,3,---}N{Bn|n=1,2,3,--- }.
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