A CHARACTERIZATION OF HOROSPHERES AND GEODESIC HYPERSPHERES IN A COMPLEX HYPERBOLIC SPACE IN TERMS OF RICCI TENSORS

SEONG SOO AHN

ABSTRACT. We want to treat this problem for real hypersurfaces in a complex hyperbolic space $H_n(C)$. Thus it seems to be natural to consider some problems concerned with the estimation of the Ricci tensor for real hypersurfaces in $H_n(C)$. In this paper we will find a new tensorial formula concerned with the Ricci tensor and give it a characterization of horospheres and geodesic hyperspheres in a complex hyperbolic space $H_n(C)$.

0. Introduction

Let $H_n(C)$ be an *n*-dimensional complex hyperbolic space equipped with the Bergman metric of constant holomorphic sectional curvature -4, and let us denote by M a real hypersurface of $H_n(C)$. Then naturally M admits so called an induced almost contact metric structure (ϕ, ξ, η, g) induced from the almost complex structure J of $H_n(C)$.

Recently many differential geometers ([2], [5], [6], [7], [13]) have studied several characterizations of homogeneous real hypersurfaces in $H_n(C)$ which are said to be of type A_0 , A_1 , A_2 and B, introduced as model hypersurfaces in the works of Berndt [2], [3], Montiel [13], and Montiel and Romero [14]. In particular, by using the notion of the tube in Cecil and Ryan [4], Montiel [13] also classified the real hypersurfaces of a complex hyperbolic space with at most two distinct principal curvatures.

Received October 17, 1997.

¹⁹⁹¹ Mathematics Subject Classification: Primary 53C40; Secondary 53C15.

Key words and phrases: horosphere, geodesic hypersphere, estimation of the Ricci tensor.

This paper was supported by the Korean Science and Engineering Foundation, Project No. 971-0104-018-1.

Also Berndt [2] classified all real hypersurfaces with constant principal curvature of $H_n(C)$ under the condition that the structure vector field ξ is principal. Namely he proved the following.

THEOREM A. Let M be a connected real hypersurface of $H_n(C)$ $(n\geq 2)$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following

- (A_0) a horosphere in $H_n(C)$,
- (A₁) a geodesic hypersphere or a tube over a complex hyperplane $H_{n-1}(C)$.
- (A₂) a tube over a totally geodesic submanifold $H_k(C)$ for k = 1, ..., n 2.
- (B) a tube over a totally real hyperbolic space $H_n(R)$.

As can be seen from the example above real hypersurface of type A_0 is said to be a horosphere, which has no focal points and which is congruent to all its parallel hypersurfaces, and that of type A_1 is said to be a geodesic hypersphere. Garay and Romero [6] constructed an isometric embedding of $H_n(C)$ into a pseudo-Euclidean space and characterize the horosphere by computing the Laplacian of the mean curvature vector field of M in a pseudo-Eclidean space.

On the other hand, if we use the equation of Codazzi, we know that there does not exist a real hypersurface in $H_n(C)$ with the parallel second fundamental tensor. From this point of view, Chen, Ludden and Montiel [5] calculated the norm of the derivative of the second fundamental tensor for the real hypersurfaces in $H_n(C)$ and showed that it is estimated by $\|\nabla A\|^2 \ge 4(n-1)$, where the equality holds if and only if M is of type A_0 , A_1 and A_2 .

Moreover, in a paper [7] Ki, Nakagawa and Suh proved that there does not exist a real hypersurface of non-flat complex space forms $M_n(c)$ with harmonic Weyl tensor. So it follows that there does not exist a Einstein or a real hypersurface with parallel Ricci tensor in non-flat complex space forms. From this fact in a real hypersurface of a complex projective space $P_n(C)$ Kimura and Maeda [11] estimated the norm of the derivative of the Ricci tensor and obtained a characterization of a geodesic hypersphere in $P_n(C)$.

Now we want to treat this problem for real hypersurfaces in a complex hyperbolic space $H_n(C)$. Thus it seems to be natural to consider some problems concerned with the estimation of the Ricci tensor for real hypersurfaces in $H_n(C)$. In this paper we will find a new tensorial formula concerned with the Ricci tensor and give it a characterization of horospheres and geodesic hyperspheres in a complex hyperbolic space $H_n(C)$ by the following.

THEOREM 1. Let M be a real hypersurface in $H_n(C)$. Then the Ricci tensor S of M satisfies

$$(0.1) \qquad (\nabla_X S)Y = c\{g(\phi X, Y)\xi + \eta(Y)\phi X\}$$

for a non-zero constant c if and only if M is locally congruent to one of type A_0 and A_1 .

Finally, as an application of this characterization we will estimate the norm of the covariant derivative of the Ricci tensor for these types by the following

THEOREM 2. Let M be a real hypersurface with constant mean curvature in $H_n(C)$. Then the following inequality holds

where the above equality holds if and only if M is locally congruent to one of type A_0 and A_1 , provided that $\alpha = \eta(A\xi)$ is constant.

1. Preliminaries

Let M be an orientable real hypersurface of $H_n(C)$ and let N be a unit normal vector field on M. The Riemannian connections $\tilde{\nabla}$ in $H_n(C)$ and ∇ in M are related by the following formulas for any vector fields X and Y on M:

$$\tilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)N,$$

$$\tilde{\nabla}_X N = -AX,$$

where g denotes the Riemannian metric of M induced from the Bergman metric G of $H_n(C)$ and A is the shape operator of M in $H_n(C)$.

An eigenvector X of the shape operator A is called a principal curvature vector. Also an eigenvalue λ of the shape operator A is called a principal curvature. In what follows, we denote by V_{λ} the eigenspace of A associated with eigenvalue λ . It is known that M has an almost contact metric structure induced from the complex structure J on $H_n(C)$, that is, we define a tensor field ϕ of type (1,1), a vector field ξ and a 1-form η on M by $g(\phi X, Y) = G(JX, Y)$ and $g(\xi, X) = \eta(X) = G(JX, N)$. Then we have

(1.3)
$$\phi^2 X = -X + \eta(X)\xi, g(\xi, \xi) = 1, \phi \xi = 0.$$

It follows from (1.1) that

$$(1.4) \qquad (\nabla_X \phi) Y = \eta(Y) A X - g(AX, Y) \xi,$$

$$(1.5) \nabla_X \xi = \phi A X.$$

Let \tilde{R} and R be the curvature tensors of $H_n(C)$ and M, respectively. Since the curvature tensor \tilde{R} has a nice form, we have the following Gauss and Codazzi equations

$$g(R(X,Y)Z,W) = -g(Y,Z)g(X,W) + g(X,Z)g(Y,W) - g(\phi Y,Z)g(\phi X,W) + g(\phi X,Z)g(\phi Y,W) + 2g(\phi X,Y)g(\phi Z,W) + g(AY,Z)g(AX,W) - g(AX,Z)g(AY,W),$$

$$(1.7) \quad (\nabla_X A)Y - (\nabla_Y A)X = -\eta(X)\phi Y + \eta(Y)\phi X + 2g(\phi X, Y)\xi,$$

where R denotes the Riemannian curvature tensor of M and $\nabla_X A$ is the covariant derivative of the shape operator A with respect to X.

Horospheres and geodesic hyperspheres

The Ricci tensor S' of M is the tensor of type (0,2) which is given by $S'(X,Y): trZ \rightarrow R(Z,X)Y$. Also it may be regarded as the tensor of type (1,1) and denote by $S: TM \rightarrow TM$; it satisfies S'(X,Y) = g(SX,Y). From (1.6) we see that the Ricci tensor S of M is given by

(1.8)
$$S = -(2n+1)I + 3\eta \otimes \xi + hA - A^2,$$

where we have put h = trA. The covariant derivative of (1.5) are given as follows

$$(1.9)$$

$$(\nabla_X S)Y$$

$$= 3(\nabla_X \eta)(Y) + 3\eta(Y)\nabla_X \xi + (Xh)AY + h(\nabla_X A)Y - (\nabla_X A^2)Y.$$

2. Proof of Theorem 1

Let M be a real hypersurface in a complex hyperbolic space $H_n(C)$. Firstly let us suppose that M is a horosphere in $H_n(C)$ which is said to be of type A_0 . Then its Weingarten map A is given by

$$(2.1) AX = X + \eta(X)\xi$$

for any vector field X in TM.

On the other hand, by a theorem of Chen, Ludden and Montiel [5] it also satisfies the following

(2.2)
$$(\nabla_X A)Y = \eta(Y)\phi X + g(\phi X, Y)\xi.$$

Also (2.2) can be derived by the covariant differentiating of (2.1). From (2.1) and (2.2), together with (1.6), it follows that

$$(2.3) \qquad (\nabla_X S)Y = 2n\{\eta(Y)\phi X + g(\phi X, Y)\xi\}.$$

So a horosphere in $H_n(C)$ satisfies the formula (0.1) for a non-zero constant c = 2n.

Next let us consider for the case where M is of type A_1 which is said to be geodesic hypersphere, that is, the tube of radius r over $H_k(C)$, k = 0. Then its Weingarten map is given by

$$A = \begin{pmatrix} 2 \coth r & & & 0 \\ & \coth r & & \\ 0 & & & \cot h r \end{pmatrix}$$

Now let us denote a principal curvature $\coth r$ by t. Then the above Weingarten map A is represented by

$$AX = tX + \frac{1}{t}\eta(X)\xi,$$

and

$$(\nabla_X A)Y = \eta(Y)\phi X + g(\phi X, Y)\xi.$$

So it follows that

$$(\nabla_X A)AY = (t + \frac{1}{t})\eta(Y)\phi X + tg(\phi X, Y)\xi.$$

Substituting these formulas into (1.9), we get

(2.4)
$$(\nabla_{X}S)Y = 3t\{g(\phi X, Y)\xi + \eta(Y)\phi X\} + (hI - A)\{\eta(Y)\phi X + g(\phi X, Y)\xi\} - (t + \frac{1}{t})\eta(Y)\phi X - tg(\phi X, Y)\xi$$
$$= 2nt\{g(\phi X, Y)\xi + \eta(Y)\phi X\}.$$

Thus a geodesic hypersphere satisfies the formula (0.1) for c = 2nt.

From now on let us consider the converse problem. First of all in order to get a characterization of horospheres and geodesic hyperspheres we give the following lemma.

LEMMA 2.1. Let M be a real hypersurface in $H_n(C)$. If the Ricci tensor S of M satisfies

(0.1)
$$(\nabla_X S)Y = c\{g(\phi X, Y)\xi + \eta(Y)\phi X\}$$

for a non-zero constant c, then the structure vector field ξ is principal.

Using the similar method given in [12], we can easily get the lemma above. So we omit this proof.

Now let us introduce the notion of η -parallel Ricci tensor, that is,

$$g((\nabla_X S)Y, Z) = 0$$

for any X, Y and Z in \mathcal{D} , where \mathcal{D} denotes a distribution defined by $\mathcal{D}(x) = \{u \in T_x M : u \perp \xi(x)\}$ in the tangent space $T_x M$ of M at any point x in M. With this notion of η -parallel Ricci tensor Suh [15] classified real hypersurfaces in $H_n(C)$ as the following

THEOREM 2.2. Let M be a real hypersurface in $H_n(C)$. Then the Ricci tensor of M is η -parallel and ξ is principal if and only if M is locally congruent to one of homogeneous real hypersurfaces of type A_0 , A_1 , A_2 , and B.

Now let us suppose that M is a real hypersurface in $H_n(C)$ satisfying the formula (0.1). Then Lemma 2.1 gives that its structure vector field ξ is principal.

On the other hand, from the formula (0.1) we have

$$g((\nabla_X S)Y, Z) = 0$$

for any vector fields X, Y and Z in \mathcal{D} . So it follows from these facts and Theorem 2.2 that M is locally congruent to one of homogeneous real hypersurfaces of type A_0, A_1, A_2 and B. Thus it remains only to show that the formula (0.1) does not hold for the case where M is of type A_2 and B.

If M is of type A_2 , then its Weingarten map A is given by

where the principal curvatures $\coth r$ and $\tanh r$ have its multiplicities 2p and 2q respectively, and p+q=n-1. Now let us denote $\coth r$ by t. Then in this case AX=tX implies $A\phi X=t\phi X$. So by a theorem of Chen, Montiel and Ludden [5] we get

$$(\nabla_X A)Y = \eta(Y)\phi X + g(\phi X, Y)\xi.$$

From this we have

$$(\nabla_X A)\phi X = \xi$$
, and $(\nabla_X A)A\phi X = t\xi$.

So it follows from this fact and (1.5) that

$$(\nabla_X S)\phi X = 3g(\phi AX, \phi X)\xi + (hI - A)(\nabla_X A)\phi X - (\nabla_X A)A\phi X$$

$$(2.5) \qquad = 3t\xi + (hI - A)\xi - t\xi$$

$$= \{2(p+1)t + \frac{2q}{t}\}\xi,$$

where we have used $(hI - A)\xi = (h - \alpha)\xi = (2pt + \frac{2q}{t})\xi$. Now let Y be the principal curvature vector orthogonal to ξ with the principal curvature $\frac{1}{t}$. Then by using the similar method as above we have

$$(\nabla_Y S)\phi Y = 3g(\phi AY, \phi Y)\xi + (hI - A)(\nabla_Y A)\phi Y - (\nabla_Y A)A\phi Y$$

$$(2.6) \qquad = \frac{3}{t}\xi + (hI - A)\xi - \frac{1}{t}\xi$$

$$= \{2(q+1)\cdot\frac{1}{t} + 2pt\}\xi.$$

Since M satisfies the formula (0.1), we know

$$(\nabla_X S)\phi X = c\xi = (\nabla_Y S)\phi Y.$$

So it follows from (2.5) and (2.6) that

$$\{2(p+1)t+rac{2q}{t}\}=2(q+1)\cdotrac{1}{t}+2pt.$$

Hence $t^2 = 1$. This contradicts the fact that $t = \coth r > 1$ or $t = \coth r < -1$. Thus this case can not occur.

Finally let us suppose that M is of type B. Then its Weingarten map A is given by

where the principal curvatures $\coth r$ and $\tanh r$ have its multiplicities n-1 respectively. In this case its structure vector ξ is principal. That is $A\xi = \alpha \xi$. From this, taking differentiation, we get

(2.7)
$$A\phi A = -\phi + \frac{\alpha}{2}(A\phi + \phi A).$$

On the other hand, from (2.7) and the equation of Codazzi (1.7) we have

(2.8)
$$(\nabla_{\xi}A)X = (\nabla_{X}A)\xi - \phi X = \alpha\phi AX - A\phi AX - \phi X$$
$$= -\frac{\alpha}{2}(A\phi - \phi A)X.$$

Since M satisfies (0.1), we have $\nabla_{\xi} S = 0$. So it follows from (1.8) that

$$\nabla_{\xi} S = h \nabla_{\xi} A - (\nabla_{\xi} A) A - A \nabla_{\xi} A = 0.$$

Substituting (2.8) into this equation, we get

(2.9)
$$h(A\phi - \phi A) - A^2\phi + \phi A^2 = 0.$$

That is the Ricci tensor S and the structure tensor ϕ commutes to each other. Now let us denote by $\alpha = 2 \tanh 2r$, $\lambda = \tanh r$ and $\mu = \coth r$. Then (2.9) gives that

$$(2.10) (\lambda - \mu)\{(\lambda + \mu) - h\} = 0.$$

Since the multiplicities of the principal curvatures λ and μ are equal to n-1 and $\lambda \neq \mu$, (2.10) gives

$$h = \alpha + (n-1)(\lambda + \mu) = \alpha + (n-1)h.$$

So $(n-2)h + \alpha = 0$, from which together with the fact that $\alpha = \frac{4\lambda}{(1+\lambda^2)}$ it follows that

$$4\lambda^2 + (n-2)(1+\lambda^2) = 0.$$

This contradicts. So this case can not occur. Summing up these facts, we have completed the proof of Theorem 1.

3. Proof of Theorem 2

Let M be a real hypersurface in a complex hyperbolic space $H_n(C)$. Motivated by Theorem 1 we will prove the main result in this section. From now on we will discuss our statement under the condition that the mean curvature h and the function $\eta(A\xi)$ which will be denoted by α are locally constant on M.

On the other hand, from (2.3) and (2.4) we know that the derivative of the Ricci tensor S of a horosphere and a geodesic hypersphere satisfies

$$(3.1) \qquad (\nabla_X S)Y = \frac{n}{n-1}(h-\alpha)\{g(\phi X,Y)\xi + \eta(Y)\phi X\}.$$

Now let us define a new tensor field T on a real hypersurface M in $H_n(C)$ as follows

$$T(X,Y) = (\nabla_X S)Y - \frac{n}{n-1}(h-\alpha)\{g(\phi X,Y)\xi + \eta(Y)\phi X\}.$$

Thus by Theorem 1, T=0 holds on M if and only if M is locally congruent to one of type A_0, A_1 . For a case where T=0 we here note that $h-\alpha\neq 0$. In fact, if $h=\alpha$, then the Ricci tensor S is parallel on M. But we know that there does not exist a real hypersurface in $H_n(C)$ with the parallel Ricci tensor ([7]).

Let $\{e_1, ..., e_{2n-1}\}$ be an orthonormal basis of $T_x(M)$ for any $x \in M$. Then the length of T can be calculated as follows

$$||T||^{2} = \sum_{i=1}^{2n-1} g(T(e_{i}, e_{j}), T(e_{i}, e_{j}))$$

$$= ||\nabla S||^{2} + \frac{4n^{2}}{n-1} (h-\alpha)^{2}$$

$$- \frac{2n}{n-1} (h-\alpha) \sum_{i,j} g((\nabla_{e_{i}} S) e_{j}, g(\phi e_{i}, e_{j}) \xi + \eta(e_{j}) \phi e_{i}),$$

where we have used $\sum_{i,j} \|g(\phi e_i, e_j)\xi + \eta(e_j)\phi e_i\|^2 = 4(n-1)$.

On the other hand, by virtue of (1.9) we can calculate the following

$$\begin{split} & \Sigma_{i,j} g((\nabla_{e_i} S) e_j, g(\phi e_i, e_j) \xi + \eta(e_j) \phi e_i) = 2 \Sigma_i g((\nabla_{e_i} S) \xi, \phi e_i) \\ & = 2 \Sigma_i \{ 3 g(\phi A e_i, \phi e_i) + g((hI - A)(\nabla_{e_i} A) \xi, \phi e_i) - g((\nabla_{e_i} A) A \xi, \phi e_i) \} \\ & = 6 (h - \alpha) + 2 T r(\phi A \nabla_{\xi} A) + 4 (n - 1) h - 2 (h - \alpha) - 4 (n - 1) \alpha \\ & = 4 n (h - \alpha) + 2 T r(\phi A \nabla_{\xi} A), \end{split}$$

where we have used the constancy of the mean curvature h of M to the second equality and the equation of Codazzi (1.7) to the third equality. Then substituting this into (3.2), we get

$$\|T\|^2 = \|\nabla S\|^2 - \frac{4n}{n-1}(h-\alpha)\{n(h-\alpha) + Tr(\phi A \nabla_{\xi} A)\}.$$

Thus we have proved Theorem 2 in §0.

References

[1] S. S. Ahn and Y. J. Suh, On characterizations of real hypersurfaces of type B in a complex hyperbolic space, J. Korean Math. Soc. 32 (1995), 471-482.

- J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.
- [3] _____, Geometry and Topology of Submanifolds II. (Avignon, 1988), 10-19, World Scientific, 1990.
- [4] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
- [5] B. Y. Chen, G. D. Ludden and S. Montiel, Real submanifold of a Kaehler manifold, Algebras Groups and Geometries 1 (1984), 176-212.
- [6] O. J. Garay and A. Romero, An isometric embedding of the complex hyperbolic space in a pseudo-Euclidean space and its application to the study of real hypersurfaces, Tsukuba J. Math. 14 (1990), 293-313.
- [7] U-H. Ki, H. Nakagawa and Y. J. Suh, Real hypersurfaces with harmonic Weyl tensor of a complex space form, Hiroshima Math. J. 20 (1990), 93-102.
- [8] U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama 32 (1990), 207-221.
- [9] _____, Characterizations of some real hypersurfaces in P_n(C) in terms of Ricci tensor, Nihonkai Math. J. 3 (1992), 133-162.
- [10] _____, On a characterization of real hypersurfaces of type A in a complex space form, Canadian Mathematical Bull. 37 (1994), 238-244.
- [11] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
- [12] M. Kimura and S. Maeda, Characterizations of geodesic hyperspheres in a complex projective space in terms of Ricci tensors, Yokohama Math. J. 40 (1992), 35-43.
- [13] S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985), 515-535.
- [14] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata 20 (1986), 245–261.
- [15] Y. J. Suh, On real hypersurfaces of a complex space form with η parallel Ricci tensor, Tsukuba J. Math. 14 (1990), 27-37.
- [16] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.

DEPARTMENT OF MATHEMATICS, DONGSHIN UNIVERSITY, NAJU 520-714, KOREA