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A CHARACTERIZATION OF HOROSPHERES AND
GEODESIC HYPERSPHERES IN A COMPLEX
HYPERBOLIC SPACE IN TERMS OF RICCI TENSORS

SEONG SO0 AHN

ABSTRACT. We want to treat this problem for real hypersurfaces in
a complex hyperbolic space H,(C). Thus it seems to be natural to
consider some problems concerned with the estimation of the Ricci
tensor for real hypersurfaces in Hn(C). In this paper we will find
a new tensorial formula concerned with the Ricci tensor and give
it a characterization of horospheres and geodesic hyperspheres in a
complex hyperbolic space H,(C).

0. Introduction

Let H,(C) be an n-dimensional complex hyperbolic space equipped
with the Bergman metric of constant holomorphic sectional curvature
-4, and let us denote by M a real hypersurface of H,(C). Then nat-
urally M admits so called an induced almost contact metric structure
(¢,€,m,9) induced from the almost complex structure J of H,(C).

Recently many differential geometers ([2], [5], [6], [7], [L3]) have stud-
ied several characterizations of homogeneous real hypersurfaces in H, (C)
which are said to be of type Ag, A1, A2 and B, introduced as model hy-
persurfaces in the works of Berndt {2], [3], Montiel [13], and Montiel and
Romero [14]. In particular, by using the notion of the tube in Cecil and
Ryan [4], Montiel [13] also classified the real hypersurfaces of a com-
plex hyperbolic space with at most two distinct principal curvatures.
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Also Berndt [2] classified all real hypersurfaces with constant principal
curvature of H,(C) under the condition that the structure vector field
¢ is principal. Namely he proved the following.

THEOREM A. Let M be a connected real hypersurface of H,(C)
(n>2). Then M has constant principal curvatures and £ is principal if
and only if M is locally congruent to one of the following

(Ao) a horosphere in H,(C),

(A1) a geodesic hypersphere or a tube over a complex hyperplane

H, 1(C).
(A2) a tube over a totally geodesic submanifold Hy(C) for
k=1,..,n—2.

(B) a tube over a totally real hyperbolic space Hn(R).

As can be seen from the example above real hypersurface of type
Ay is said to be a horosphere, which has no focal points and which
is congruent to all its parallel hypersurfaces, and that of type A; is
said to be a geodesic hypersphere. Garay and Romero [6] constructed
an isometric embedding of H,(C) into a pseudo-Euclidean space and
characterize the horosphere by computing the Laplacian of the mean
curvature vector field of M in a pseudo-Eclidean space.

On the other hand, if we use the equation of Codazzi, we know that
there does not exist a real hypersurface in H,(C) with the parallel
second fundamental tensor. From this point of view, Chen, Ludden
and Montiel [5] calculated the norm of the derivative of the second
fundamental tensor for the real hypersurfaces in H,(C) and showed
that it is estimated by ||V A||2>4(n — 1), where the equality holds if
and only if M is of type Ag, A; and As.

Moreover, in a paper [7] Ki, Nakagawa and Suh proved that there
does not exist a real hypersurface of non-flat complex space forms My (c)
with harmonic Weyl tensor. So it follows that there does not exist a
Einstein or a real hypersurface with parallel Ricci tensor in non-flat
complex space forms. From this fact in a real hypersurface of a complex
projective space P,,(C) Kimura and Maeda [11] estimated the norm of
the derivative of the Ricci tensor and obtained a characterization of a
geodesic hypersphere in P,(C).
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Now we want to treat this problem for real hypersurfaces in a com-
plex hyperbolic space H,(C). Thus it seems to be natural to consider
some problems concerned with the estimation of the Ricci tensor for
real hypersurfaces in H,(C). In this paper we will find a new tensorial
formula concerned with the Ricci tensor and give it a characterization

of horospheres and geodesic hyperspheres in a complex hyperbolic space
H,(C) by the following.

THEOREM 1. Let M be a real hypersurface in H,(C). Then the
Ricci tensor S of M satisfies
(0.1) (VxS)Y = c{g(¢X,Y) +n(Y)pX}
for a non-zero constant c if and only if M is locally congruent to one of
type Ap and A;.

Finally, as an application of this characterization we will estimate
the norm of the covariant derivative of the Ricci tensor for these types
by the following

THEOREM 2. Let M be a real hypersurface with constant mean
curvature in H,(C). Then the following inequality holds

4n
n—1

(0.2) IvSI*2 (h—a){n(h —a) + Tr(¢AV:A)},

where the above equality holds if and only if M is locally congruent to
one of type Ap and A1, provided that a = n(A€) is constant.
1. Preliminaries

Let M be an orientable real hypersurface of H,(C) and let N be
a unit normal vector field on M. The Riemannian connections V in

H,(C) and V in M are related by the following formulas for any vector
fields X and Y on M:

(1.1) VxY = VxY + g(AX,Y)N,

(1.2) VxN = -AX,
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where g denotes the Riemannian metric of M induced from the Bergman
metric G of H,(C) and A is the shape operator of M in H,(C).

An eigenvector X of the shape operator A is called a principal
curvature vector. Also an eigenvalue A of the shape operator A is
called a principal curvature. In what follows, we denote by V) the
eigenspace of A associated with eigenvalue A. It is known that M has
an almost contact metric structure induced from the complex struc-
ture J on H,(C), that is, we define a tensor field ¢ of type (1,1), a
vector field £ and a 1-form n on M by g(¢X,Y) = G(JX,Y) and
9(¢,X) =n(X) = G(JX,N). Then we have

(1.3) $*X = =X +1(X)€,9(6,6) = 1,6 = 0.

It follows from (1.1) that

(1.4) (Vx¢)Y =n(Y)AX — g(AX,Y),

(1.5) Vxé = ¢pAX.

Let R and R be the curvature tensors of H,(C) and M, respectively.
Since the curvature tensor R has a nice form, we have the following
Gauss and Codazzi equations

I(R(X,Y)Z,W) = - g(Y, Z)g(X, W)
+ 9(X, Z2)g(Y, W) — g(¢Y, Z)g(¢X, W)
+ 9(¢X, Z)g(¢Y, W) + 29(6X,Y)g(¢Z, W)
+ g(AY, Z)g(AX, W) — g(AX, Z)g(AY, W),

(1.6)

(L7 (VxA)Y — (VyA)X = —n(X)8Y +n(Y)X + 29(¢X, Y )¢,

where R denotes the Riemannian curvature tensor of M and VxA is
the covariant derivative of the shape operator A with respect to X.
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The Ricci tensor S’ of M is the tensor of type (0,2) which is given
by S/(X,Y) : trZ—R(Z,X)Y. Also it may be regarded as the tensor
of type (1,1) and denote by S : TM—TM; it satisfies S'(X,Y) =
9(SX,Y). From (1.6) we see that the Ricci tensor S of M is given by

(1.8) S=—(2n+ 1)I + 3n®¢ + hA — A%,

where we have put h = trA. The covariant derivative of (1.5) are given
as follows
(1.9)

(VxS)Y

= 3(Vxn)(Y) + 3n(Y)VxE + (XRh)AY + h(VxA)Y — (VxA?)Y.

2. Proof of Theorem 1

Let M be a real hypersurface in a complex hyperbolic space H,(C).
Firstly let us suppose that M is a horosphere in H,(C) which is said
to be of type Ap. Then its Weingarten map A is given by

(2.1) AX = X +n(X)¢

for any vector field X in TM.

On the other hand, by a theorem of Chen, Ludden and Montiel [5]
it also satisfies the following

(2.2) (VxA)Y =n(Y)oX + g(6X,Y)E.

Also (2.2) can be derived by the covariant differentiating of (2.1). From
(2.1) and (2.2), together with (1.6), it follows that

(2.3) (Vx8)Y =2n{n(Y)eX + g(¢X,Y)E}.

So a horosphere in H,(C) satisfies the formula (0.1) for a non-zero
constant ¢ = 2n.
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Next let us consider for the case where M is of type A, which is said
to be geodesic hypersphere, that is, the tube of radius r over Hy(C),
k = 0. Then its Weingarten map is given by

2cothr
cothr O

O . cothr

Now let us denote a principal curvature cothr by . Then the above
Weingarten map A is represented by

1
AX =tX + ;n(X)g,
and

(VxA)Y =n(Y)oX + g(6X,Y)E.

So it follows that
1
(VxAVAY = (t+ T)n(Y)oX +tg(6X, V)&,

Substituting these formulas into (1.9), we get

(2.4)
(Vx8)Y =3t{g(6X,Y)€ + n(Y)pX} + (RI — A){n(Y)¢X
+g(8X,Y)E} — (4 n(¥Y)6X — 199X, Y)e
=2nt{g(9X, V)€ + n(Y)$X).

Thus a geodesic hypersphere satisfies the formula (0.1) for ¢ = 2nt.

From now on let us consider the converse problem. First of all in
order to get a characterization of horospheres and geodesic hyperspheres
we give the following lemma.
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LEMMA 2.1.  Let M be a real hypersurface in H,(C). If the Ricci
tensor S of M satisfies

(0.1) (Vx8)Y = c{g(¢X,Y) +n(Y)pX}

for a non-zero constant ¢, then the structure vector field £ is principal.

Using the similar method given in [12], we can easily get the lemma
above. So we omit this proof.

Now let us introduce the notion of n-parallel Ricci tensor, that is,
9((VxS)Y,Z) =0

for any X,Y and Z in D, where D denotes a distribution defined by
D(z) = {uelM : ulé(z)} in the tangent space T, M of M at any
point z in M. With this notion of n-parallel Ricci tensor Suh [15]
classified real hypersurfaces in H,(C) as the following

THEOREM 2.2. Let M be a real hypersurface in H,(C). Then
the Ricci tensor of M is n-parallel and € is principal if and only if M

is locally congruent to one of homogeneous real hypersurfaces of type
Ao, A]_, Ag, and B.

Now let us suppose that M is a real hypersurface in H,(C) satisfying
the formula (0.1). Then Lemma 2.1 gives that its structure vector field
£ is principal.

On the other hand, from the formula (0.1) we have
9(Vx8)Y,2)=0

for any vector fields X,Y and Z in D. So it follows from these facts
and Theorem 2.2 that M is locally congruent to one of homogeneous
real hypersurfaces of type Ag, A1, A2 and B. Thus it remains only to
show that the formula (0.1) does not hold for the case where M is of
type As and B.
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If M is of type Az, then its Weingarten map A is given by

(2coth2r O \

cothr

A= cothr
tanhr

0 tanhr)

where the principal curvatures cothr and tanhr have its multiplicities
2p and 2q respectively, and p+ ¢ = n — 1. Now let us denote cothr by
t. Then in this case AX = tX implies ApX = t¢pX. So by a theorem
of Chen, Montiel and Ludden [5] we get

(VxA)YY =n(Y)pX + g(¢X,Y)E.
From this we have
(VxA)pX =¢, and (VxA)ApX =1t€.

So it follows from this fact and (1.5) that

(Vx8)pX = 3g(¢AX, ¢ X )¢ + (Rl — A)(Vx A)pX — (VxA)ApX
(2.5) = 3t6 + (R — A)E — t¢

= (2(p+ Dt + 1),

where we have used (hI — A)¢ = (h — a)é = (2pt + 22)€. Now let

Y be the principal curvature vector orthogonal to £ with the principal
curvature % Then by using the similar method as above we have

(Vy$)6Y = 3g($AY, 6V )¢ + (I — A)(Vy A)$Y — (Vy A)AgY
(26) = 26+ (hl - ) - 3¢

= {2(q + 1)% + 2pt}€.
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Since M satisfies the formula (0.1), we know
(VxS)¢X = c§ = (VyS)eY.
So it follows from (2.5) and (2.6) that
{2(p+ 1)t + thl_} =2(qg+ 1)-% + 2pt.
Hence t* = 1. This contradicts the fact that ¢t = cothr > 1 or t =

cothr < —1. Thus this case can not occur.

Finally let us suppose that M is of type B. Then its Weingarten
map A is given by

2 tanh 2r O \

cothr

A= cothr
tanhr

0 tanhr /

where the principal curvatures cothr and tanhr have its multiplicities
n — 1 respectively. In this case its structure vector £ is principal. That
is A = a€. From this, taking differentiation, we get

(2.7) ApA = —¢+ %(Aqb + pA).

On the other hand, from (2.7) and the equation of Codazzi (1.7) we
have

(VeA)X = (VxA) — ¢X = apAX — APAX — ¢X
(28) - —%(A¢ — pA)X.
Since M satisfies (0.1), we have V¢S = 0. So it follows from (1.8) that
VeS =hVeA— (VeA)A—- AV A =0.
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Substituting (2.8) into this equation, we get
(2.9) h(Ad — pA) — A%¢ + pA% = 0.

That is the Ricci tensor S and the structure tensor ¢ commutes to each
other. Now let us denote by o = 2tanh2r A = tanhr and p = cothr.
Then (2.9) gives that

(2.10) (A= p{(A+p)—h} =0

Since the multiplicities of the principal curvatures A and u are equal to
n —1 and A#p, (2.10) gives

h=a+(n-1)A+u)=a+ (n—1)h.

So (n —2)h+ a = 0, from which together with the fact that o = ﬁ
it follows that
424+ (n-2)(1+ %) =0.

This contradicts. So this case can not occur. Summing up these facts,
we have completed the proof of Theorem 1.

3. Proof of Theorem 2

Let M be a real hypersurface in a complex hyperbolic space H,(C).
Motivated by Theorem 1 we will prove the main result in this section.
From now on we will discuss our statement under the condition that
the mean curvature h and the function n(A¢) which will be denoted by
a are locally constant on M.

On the other hand, from (2.3) and (2.4) we know that the derivative
of the Ricci tensor S of a horosphere and a geodesic hypersphere satisfies

(81)  (VxS)Y = —=(h-a){g(¢X, ) +n(¥)9X}.

Now let us define a new tensor field T on a real hypersurface M in
H,(C) as follows

T(X,Y) = (VxS)Y — = (h— a){g(6X,Y)¢ + (V)X }.
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Thus by Theorem 1, T = 0 holds on M if and only if M is locally
congruent to one of type Ag, A;. For a case where T' = 0 we here note
that h — a#0. In fact, if A = @, then the Ricci tensor S is parallel

on M. But we know that there does not exist a real hypersurface in
H,(C) with the parallel Ricci tensor ([7]).

Let {ei, ...,e2n—1} be an orthonormal basis of T,(M) for any zeM.
Then the length of T can be calculated as follows

HTH2 =E?2I19(T(ei,ej),T(€i,6j)
4 2
32  =IVSIP+ T (h-a)
2
- n_ill(h - a)2i>jg((v€is)ejag(¢eiy e])E + n(ej)qbei),

where we have used X; ;| g(de;, ;)€ + n(e;)pe;||2 = 4(n — 1).
On the other hand, by virtue of (1.9) we can calculate the following

%4,i9((Ve, S)ej» g(des, €5) + nlej)des) = 25ig((Ve, S)E, de)

= 28:{3g(pAe;, pe:) + g((hI — A)(Ve, A)E, de:) — g((Ve, A) AL, dei) }
=6(h —a)+ 2Tr(pAVeA) + 4(n — 1)h — 2(h — a) — 4(n - 1)

= 4n(h — o) + 2Tr(¢pAV:A),

where we have used the constancy of the mean curvature h of M to the
second equality and the equation of Codazzi (1.7) to the third equality.
Then substituting this into (3.2), we get

4n
n—1

1T = VS)* ~

(h—a){n(h —a)+ Tr(¢pAV A)}.
Thus we have proved Theorem 2 in §0.
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