Pattern Recognition Improvement of an Ultrasonic Sensor System Using Neuro-Fuzzy Signal Processing

초음파센서 시스템의 패턴인식 개선을 위한 뉴로퍼지 신호처리

  • 나승유 (全南大學校 電子工學科) ;
  • 박민상 (全南大學校 電子工學科)
  • Published : 1998.12.01

Abstract

Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But for the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. The time-of-flight(TOF) method generally used for distance measurement can not distinguish small object patterns of plane, corner or edge. To resolve the problem, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensors has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. Also simple patterns are classified based on analyzing signal reflections. In this paper we propose a method of a sensor array system with improved capability in pattern distinction using electronic circuits accompanying the sensor array, and intelligent algorithm based on neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. A set of different return signals from neighborhood sensors is manipulated to provide enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

초음파센서는 저렴성, 단순한 구조, 기계적 강인성, 사용상의 적은 제약 등의 이점 때문에 실제 다양한 응용 분야에 적용되지만 물체의 인식에 초음파센서를 사용하기에는 낮은 분해능을 초래하는 불량한 방향성과 측정오류를 유발하는 반사성의 어려움을 내재하고 있다. 일반적인 거리계에 사용되는 TOF(time of flight) 방법은 작은 물체의 형태, 즉 평면, 코너, 에지의 구별이 불가능하므로 많은 수의 센서를 배열형태로 사용하거나, 일정수의 센서를 사용할 경우에는 센서의 배열을 기계적으로 이동시키는 방법, 그리고 초음파 반사신호의 물리적인 특징을 해석하여 물체를 구별 인식한다. 본 논문에서는 간단하게 구성된 전자회로를 부가하여 초음파센서의 송출전압을 여러 단계로 변경시켜 가면서 송출음파를 조절하고, 물체의 패턴인식에 있어서 가장 기본적인 거리뿐만 아니라 물체크기, 물체각도, 물체이동 값을 위해 센서 데이터의 조합을 이용한 보간법과 제안한 뉴로퍼지 기반의 지능적 게산 알고리즘을 적용하여 물체의 패턴 인식을 개선한다.

Keywords