Performance Improvement of Automatic Speech Segmentation and Labeling System

자동 음성분할 및 레이블링 시스템의 성능향상

  • Published : 1998.12.01

Abstract

Database segmented and labeled up to phoneme level plays an important role in phonetic research and speech engineering. However, it usually requires manual segmentation and labeling, which is time-consuming and may also lead to inconsistent consequences. Automatic segmentation and labeling can be introduced to solve these problems. In this paper, we investigate a method to improve the performance of automatic segmentation and labeling system, where Spectral Variation Function(SVF), modification of silence model, and use of energy variations in postprocessing stage are considered. In this paper, SVF is applied in three ways: (1) addition to feature parameters, (2) postprocessing of phoneme boundaries, (3) restricting the Viterbi path so that the resulting phoneme boundaries may be located in frames around SVF peaks. In the postprocessing stage, positions with greatest energy variation during transitional period between silence and other phonemes were used to modify boundaries. In order to evaluate the performance of the system, we used 452 phonetically balanced word(PBW) database for training phoneme models and phonetically balanced sentence(PBS) database for testing. According to our experiments, 83.1% (6.2% improved) and 95.8% (0.9% improved) of phoneme boundaries were within 20ms and 40ms of the manually segmented boundaries, respectively.

Keywords