Mixed Micellar Properties of DPC with Other Cationic Surfactants (DTAB, TTAB, and CDEAB)

DPC와 다른 양이온성 계면활성제(DTAB, TTAB 및 CDEAB)와의 혼합마이셀화에 관한 연구

  • Lee, Byung Hwan (Department of Applied Chemical Engineering, Korean University of Technology)
  • 이병환 (한국기술교육대학교 응용화학공학과)
  • Published : 19981000

Abstract

The critical micelle concentration $(CMC^{\ast})$ and the counterion binding constant (B) in a micellar state of the mixed surfactant systems of dodecylpyridinium chloride (DPC) with dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB), and cetyldimethylethylammonium bromide (CDEAB) were determined at $25^{\circ}C$ as a function of ${\alpha}_1$ (the overall molc fraction of DPC) by the use of electric conductivity method. Various thermodynamic parameters $(X_{i},\;{\gamma}_{I},\;C_{i},\;a^{M}_{i}, \beta,\;{\Delta}H_{mix}, \;and\; {\Delta}G^{o}_{m})$ for the micellization of DPC/DTAB, DPC/TTAB, and DPC/CDEAB mixtures were calculated and analyzed for each system by means of the equations derived from the pseudophase separation model. The results show that the DPC/DTAB mixed system has the greatest deviation and the DPC/CDEAB mixed system has the smallest deviation from the ideal mixed micellar model.

양이온성 계면활성제인 DPC(dodecylpyridinium chloride)와 다른 양이온성 계면활성제인 DTAB(dodecyltrimethylammonium bromide), TTAB(tetradecyltrimethylammonium bromide) 및 CDEAB(cetyldimethylethylammonium bromide)와의 혼합마이셀화를 연구하기 위하여 전도도법을 이용하였다. DPC/DTAB, DPC/TTAB 및 DPC/CDEAB 혼합계면활성제의 마이셀화에 대한 임계마이셀농도$(CMC^{\ast})$와 반대이온의 결합상수값(B)을 각각 ${\alpha}$1(DPC의 몰분율)의 함수로서 25$^{\circ}C$에서 측정하였으며, 이와같이 측정한 $CMC^{\ast}$와 B 값으로부터 유사상태분리모델을 적용함으로써 여러 가지 열역학적 함수값$(X_{i},\;{\gamma}_{I},\;C_{i},\;a^{M}_{i},\;\beta,\;{\Delta}H_{mix},\;and\;{\Delta}G^{o}_{m})$을 계산하고 분석하였다. 그 결과 DPC/CDEAB 혼합계면활성제가 이상적 혼합마이셀모델에서 가장 큰 벗어남을 나타내었으며 DPC/DTAB 혼합계면활성제는 가장 작은 벗어남을 보였다.

Keywords

References

  1. Mixed Surfactant Systemer Ueno, M.;Asano, H.;Ogino, K.(Ed.);Abe, M.(Ed.)
  2. ACS Symposium Series Mixed Surfactant Systems Holland, P. M.;Holland, P. M.(Ed.);Rubingh, D. D.(Ed.)
  3. J. Colloid Interface Sci. v.125 Treiner, C.;Hortz, M.;Vaution, C.;Puisieux. F.
  4. Langmuir v.14 Shiloach, A.;Blankschtein, D.
  5. Bull. Korean Chem. Soc. v.10 Park, J. W.;Chung, M. A.;Choi, K. M.
  6. Langmuir v.8 Sarmoria, C.;Puvvads, S.;Blankschtein, D.
  7. Langmuir v.11 Junquera, E.;Pena, L.;Aicart, E.
  8. J. Colloid Interface Sci. v.180 De Lesi. R.;Inglese, A.;Milioto, S.;Pellerito, A.
  9. Langmuir v.98 Semchyschyn, D. J.;Carbone, M. A.;MacDonald, P. M.
  10. J. Phys. Chem. v.98 Kamenka, N.;Burgaud, I.;Zana, R.;Lindman, B.
  11. J. Kor. Chem. Soc. v.41 Chung, J. J.;Kim, Y. C.;Lee, B. H.
  12. J. Kor. Chem. Soc. v.39 Lee, B. H.
  13. J. Kor. Chem. Soc. v.41 Lee, B. H.
  14. Bull. Chem. Soc. Japan v.5 Nishikido, N.;Moroi, Y.;Matuura, R.
  15. J. Phys. Chem. v.87 Warr, G. G.;Greiser, F.;Healy, T. W.
  16. J. Colloid Interface Sci. v.93 Zana, R.;Picot, C.;Duplessix, R.
  17. J. Phys. Chem. v.96 Shanks, P. C.;Franses. E. I.
  18. Langmuir v.13 Zana, R.;Levy, H.
  19. J. Phys. Chem. v.87 Holland, P. M.;Rubingh, D. N.
  20. Langmuir v.6 Rathman, J. F.;Christian, S. D.
  21. Surfactants in Solution Kamrath, D. F.;Franses, E. I.;Mittal, K. L.(Ed.)
  22. Langmuir v.11 Zana, R.;Levy, H.;Papoutsi, D.;Beinert, G.