Quantum Mechanical Investigation on the Intermediates of Alkene-Ozone Reaction

알켄-오존 반응의 중간 생성물에 대한 ab initio 양자역학적 고찰

  • 강창덕 (한남대학교 이과대학 화학과) ;
  • 김승준 (한남대학교 이과대학 화학과)
  • Published : 19980400

Abstract

The geometrical parameters, vibrational frequencies, and IR intensities for primary ozonide (POZ), secondary ozonide (SOZ) and carbonyl oxide as the intermediates of alkene-ozone reaction have been predicted using high level ab initio quantum mechanical method with various basis sets. In general, the polarization function decreases bond lengths and bond angles, while the electron correlation effect increases bond lengths slightly. The electronic structure of carbonyl oxide has been predicted to be zwitterionic structure and energy difference between zwitterionic and diradical structure is evaluated to be 22.4 kcal/mol at TZ2P CISD level of theory. The experimental vibrational frequencies and IR intensities of POZ and SOZ will be compared and discussed with our high level theoretical predictions.

알켄-오존 반응에서 생성된 중간 생성물로써 primary ozonide (POZ),secondary ozonide (SOZ)그리고 carbonyl oxide의 분자구조, vibrational frequencies그리고 infrared(IR)스펙트럼의 세기 등에 대한 이론적 연구를 high level ab initio 양자역학적 방법(CISD,CCSD)을 사용하여 수행하였다. 일반적으로, polarization function은 결합각과 결합길이를 감소시키는 경향을 보였고 반면, electron correlation effect는 결합길이와 결합각을 약간 증가시키는 경향을 보이고 있다. Carbonyl oxide의 분자구조는 zwitterionic form이 diradical form보다 더 안정한 것으로 예측되었으며, 두 형태의 에너지는 차이는 TZ2P CISD level에서 약 22.4 kcal/mol인 것으로 계산되었다. 또한, POZ과 SOZ의 분자구조 및 harmonic vibrational frequencies들을 실험결과와 비교 분석하였으며 IR세기에 근거하여 각 vibrational mode를 assign 하였다.

Keywords

References

  1. Justus Liegigs Ann. Chem. v.546 Criegee, R.;Wenner, G.
  2. Chem. Rev. v.91 Bunnelle, W. H.
  3. Chem. Int. Ed. Engl. v.29 Sander, W. Angew
  4. Ozone and Carbonuyl Oxides: In 1,3-Dipolar Cycloaddition Chemistry;Padwa, A. Ed. Kuczkowski, R. L.
  5. Chem. Ber. v.125 Bucher, G.;Sander, W.
  6. J. Am. Chem. Soc. v.101 Cremer, D.
  7. J. Am. Chem. Soc. v.103 Cremer, D.
  8. Angew, Chem. Int. Ed. Engl. v.27 Cremer, D.;Schmidt, T.;Guss, J.;Radharishnan, T. P.
  9. Chem. Phys. Lett. v.163 Gauss, J.;Cremer, D.
  10. J. Org. Chem. v.54 Cremer, D.;Schmitdt, T.;Sander, W.;Bischof, P.
  11. J. Am. Chem. Soc. v.114 Bach, R. D.;Andres, J. L.;Owensby, A. L.;Schlegel H. B.;McDouall, J. J. W.
  12. J. Bartlett, Chem. Phys. Lett. v.209 Cremer, D.;Gauss, J.;Kraka, E.;stanton, J. F.;J. F. Lovas, J. F.
  13. J. Am. Chem. Soc. v.110 Gillies, J. Z.;Gillies, C. W.;Suenram, R. D.;Lovas, R. J.
  14. J. Am. Chem. Soc. v.94 Gillies, C. W.;Kucskowski, R. L.
  15. J. Chem. Phys. v.70;70;70 Cremer, D.
  16. Chem. Phys. Lett. v.83 Ruoff, P.;Saebo, S.;Almolf, J
  17. J. Am. Chem. Soc. v.94 Hull, L. A.;Hisatsune I. C.;Heicklen, J.
  18. J. Am. Chem. Soc. v.103 Kohlmiller, C. K.;Andrewd, L.
  19. J. Am. Chem. v.42 Huzianga, S.
  20. J. Am. Chem. v.53 Dunning, T. H.
  21. J. Am. Chem. v.55 Dunning, T. H.
  22. Analytic Derivative Methods in Ab initio Molecular electronic structure Theory New Dimensionto Quantun Chemistry Yamaguchi, Y.;Osamura, Y.;Goddard, J. D.;Schaefer, H. F.
  23. J. Chem. Phys. v.72 Brooks, B. R.;Laidig, W. D.;Sate, P.;Goddard, J. D.;Yamaguchi, Y.;Schaefer, H. F.
  24. J. Chem. Phys. v.87 Scheiner, A. C.;scuseria, G. E.;Rice, J. E.;Lee, T. J.;schaefer, H. F.
  25. J. Chem. Phys. v.77 Saxe, P.;Yamaguchi, Y.;schaefer, H. F.
  26. PSI 2.0.8 C. L. Janssen;E. T. Seidl;G. E. Scuseria, T. P. Hamilton;Y. Yamaguchi;R. B. remingtion;Y. Xie, G. Vacek;C. D. Sherrill;T. D. Craw-ford;J. T. Fermann;W. D. Allen;B. R. Brocks;G. B. Fitzgerald;D. J. Fox;J. F. Gaw;N. C. Handy;W. D. Laidig;T. J. Lee;R. M. Pitzer;J. E. Rice;P. Saxe;A. C. Scheiner;H. F. Schaefer
  27. Mol. Phys. v.88 Kim, S. J.;Schaefer, H. F.;Graka, E.;Cremer, D.