Photoelectrochemical Properties of $TiO_2$-Phthalocyanine Thin Film System (Ⅰ)

산화티탄-프탈로시아닌계의 광전기화학적 성질 (Ⅰ)

  • Jin, E. (Department of Chemistry, Dongguk University) ;
  • Kim, Y.S. (Department of Chemistry, Dongguk University) ;
  • Fujishima, Akira (Department of Applied Chemistry, Faculty of Engineering, The University of Tokyo)
  • Published : 19980200

Abstract

Titanium dioxide $(TiO_2)$ thin film samples were prepared by using spray pyrolysis methodology and were by using X-ray photoelectron spectroscopy and X-ray diffraction analysis. It was found that anatase prepared by the hydrolysis of titanium(Ⅳ) oxyacetylacetonate exhibited the largest specific surface area. The particle size increased with increasing temperature, while the thickness decreased. Titanium dioxide $(TiO_2)$ in the anatase form was prepared at $400^{\circ}C$ and the photoconductivity was determined using photocurrent measurements. Photoelectrochemical properties of the $TiO_2$-phthalocyanine system were measured in a three-electrode system. The photocurrent action spectrum in the visible region coincided with intrinsic absorption spectrum of phthalocyanine. The crystal structure of phthalocyanine is considered to be a very important property in the photogeneration phenomena.

산화티탄을 전극 재료로 사용하기 위해서는 투명하고 수용액에 안정한 재료가 필요하다.아세틸 아세톤 티탄(IV)으로부터 분사방법을 이용하여 산화티탄의 안정한 박막을 얻었다. 결정 모양은 구형을 나타내었으며, 결정의 크기는 온도가 증가함에 따라 증가하였고 두께는 감소하는 경향을 나타내었다. XRD 데이타로부터 아나타제 결정이 400$^{\circ}C$ 에서부터 얻어지기 시작함을 관찰하였다. 440$^{\circ}C$ 에서 만들어진 산화티탄이 고유 광전류가 최대값을 나타냈으며 가시광 영역에서 광전류가 증가하는 결과를 나타냈다. 가시광 영역에서의 광전류는 프탈로시아닌의 흡수 스펙트럼과 같은 ${\lambda}$max 위치에서 얻어졌고 이와 같은 결과는 프탈로시아닌의 결정 특성에 따른 광전류 특성으로 나타났다.

Keywords

References

  1. Adv. Mater. v.4 Gleiter, H.
  2. Adv. Mater. v.4 Lehmann, V.;Gosele, U.
  3. Angew. Chem. v.105 Weller, H.
  4. J. Am. Chem. Soc. v.109 Spanhel, L.;Weller, H.;Henglein, A.
  5. J. Phys. Chem. v.94 Gopidas, K. R.;Bohorquez, M.;Kamat, P. V.
  6. Photoinduced Electron Transfer Fox, M. A.;Chanon, M.;Elsevier(Eds.)
  7. J. Phys. Chem. v.69 Bourdon, J.
  8. Current Problems in Electrophotography Borg, W. E.;Hauffe, K. H.
  9. J. Phys. Chem. v.94 O'Regan, B.;Moser, J.;Anderson, M.;Gratzel, M.
  10. Sol. Energy. Mater v.13 Qiu, C. X.;Shih, I.
  11. J. Appl. Phys. v.9 Watanabe, H.
  12. J. Electrochem. Soc. v.128 Shealy, J. R.;Baliga, B. J.;Field, R. J.;Ghandhi, S. K.
  13. Chem. Soc. Jpn. v.11 Fujishima, A.
  14. Ann. Rev. Mater. Sci. v.12 Mooney, J. B.;Radding, S. B.
  15. Solid State Commun. v.54 Brett, M. J.;Parson, R. R.
  16. J. Vac. Sci. Technol. v.20 Maniv, S.;Westwood, W.;Columbini, E.
  17. Am. Ceram. Soc. Bull. v.45 Chambelin, R. R.
  18. J. Vac. Sci. Technol. v.A1 Gawlak, C.;Aita, C.
  19. J. Appl. Phys. v.49 Maniv, S.;Zangvil, A.
  20. Phys. Rev. v.154 Porto, S. P. S.;Fleury P. A.;Damen, T. C.
  21. Phys. Scr. Lindberg, B. J.;Hamrin, K.;Johnsson, G.;Gelius, U.;Fahlman, A.;Nordling, C.;Siegbahn, K.
  22. Thin Solid Films v.171 Minami, T.;Sato, H.;Sonada, T.;Nanto, H.;Takata, S.
  23. Thin Solid Films v.136 Eberspacher, C.;Fahrenbruch, A. L.;Bube, R. H.
  24. Phys. Rev. v.B11 Pai, D. M.;Enck, R. C.