Abstract
The excited-state intramolecular proton transfer (ESIPT) emission has been observed for 0.01 mM p-aminosalicylic acid (AS) in nonpolar aprotic solvents as demonstrated by the large Stokes' shifted fluorescence emission around 440 nm in addition to the normal emission at 330 nm. However in aprotic polar solvent such as acetonitrile, the large Stokes' shifted emission band becomes broadened, indicating existence of another emission band originated from intramolecular charge transfer (ICT). It is noteworthy that in protic solvents such as methanol and ethanol the normal and ICT emissions are quenched as the AS concentration decreases, followed by the appearance of new emission at 380 nm. These results are interpreted in terms of ESIPT coupled charge transfer in AS. Being consistent with these steady-state spectroscopic results, the picosecond time-resolved fluorescence study unravelled the decay dynamics of the ESIPT and ICT state ca. 300 ps and ca. 150 ps, respectively with ca. 40 ps for the relaxation time to form the ICT state.