Abstract
Spectral diffusion following direct triplet excitation from the ground state in glassy Methylbenzophenone as a function of transition energy has been studied. The concentrations of donor and acceptor have been determined for different transition energies. The geometrical distribution was determined by a computer simulation. The cluster size increases gradually with concentration and cluster percolation is observed at 0.31 mole fraction for a three dimensional system. The average distance between a donor and an acceptor also has been determined for different concentrations. The energy transfer efficiency changes abruptly at a critical concentration of 0.054, corresponding to a critical distance of 9.8 Å. The γvalue was evaluated to be 1.17.