DOI QR코드

DOI QR Code

Real Time Monitoring of Ionic Species Generated from Laser-Ablated Pb$(Zr_{0.52}Ti_{0.48})O_3$ Target Using Pulsed-Field Time-Of-Flight Mass spectrometer

  • Published : 1998.08.20

Abstract

The characteristics of the ablation plume generated by 532 nm Nd: YAG laser irradiation of a Pb(Zr0.52Ti0.48)O3 (PZT) target have been investigated using a pulsed-field time-of-flight mass spectrometer (TOFMS). The relative abundance of O+, Ti+, Zr+, Pb+, TiO+, and ZrO+ ions has been measured and discussed. TiO+ and ZrO+ ions were also found to be particularly stable within the laser ablation plasma with respect to PbO+ species. The behavior of the temporal distributions of each ionic species was studied as a function of the delay time between the laser shot and the ion extraction pulse. The most probable velocity of each ablated ion is estimated to be Vmp=1.1-1.6x 105 cm/s at a laser fluence of 1.2 J/cm2, which is typically employed for the thin film deposition of PZT. The TOF distribution of Ti+ and Zr+ ions shows a trimodal distribution with one fast and two slow velocity components. The fast velocity component (6.8x 10' cm/s) appears to consist of directly ablated species via nonthermal process. The second component, originated from the thermal evaporation process, has a characteristic velocity of 1.4-1.6 x 105 cm/s. The slowest component (1.2 x 105 cm/s) is composed of a dissociation product formed from the corresponding oxide ion.

Keywords

References

  1. Proc. Mater. Res. Soc. Spring Meeting Symp. on Ferroelectric Thin Film II (Materials Research Society, Pittsburgh, PA, 1991) Myers, E. R.; Kingon, A.; Tuttle, B.
  2. J. Appl. Phys. no.60 Adachi, G.; Mitsuyu, T.; Yamazaki, O.; Was, K.
  3. Jpn. J. Appl. Phys. no.24 Ichinose, N.; Hirao, Y.; Nakamoto, N.; Yamashida, T.
  4. J. Can. Ceram. Soc. no.54 Krupanidhi, S. B.; Sayer, M.; El-Assal, K.; Jen, C. K.; Farnell, G. W.
  5. Ferroelectrics no.63 Okuyama, M.; Hamakawa, Y.
  6. Appl. Phys. Lett. no.52 Sreenivas, K.; Sayer, M.; Barr, D. J.; Nishioka, M.
  7. Pulsed Laser Deposition of Thin Films Chrisey, D. B.; Hubler, G. K.
  8. Bull. Korean Chem. Soc. no.18 Im, H.-S.; Kim, S.-H.; Choi, Y.-K.; Lee, K. H.; Jung, K.-W.
  9. IEEE Trans. Appl. Supercond. no.5 Li, Q.; Liu, S.; Fenner, D. B.; Luo, J.; Hamblen, W. L.; Haigis, J.
  10. Appl. Phys. Lett. no.60 Geohegan, D. B.
  11. Laser Ablation: Mechanisms and Applications Geohegan, D. B.
  12. Phys. Rev. Lett. no.67 Otis, C. E.; Dreyfus, R. W.
  13. J. Appl. Phys. no.73 Otis, C. E.; Goodwin, P. M.
  14. Appl. Phys. Lett. no.67 Geohegan, D. B.; Puretzky, A. A.
  15. J. Appl. Phys. no.66 Hansen, S. G.
  16. J. Appl. Phys. no.36 Ready, J. F.
  17. Anal. Chem. Anal. Ser. v.124 Vertes, A.; Gijbels, R.; Adams, F.
  18. Appl. Phys. Lett. no.59 Horwitz, J. S.; Grabowski, K. S.; Chrisey, D. B.; Leuchtner, R. E.
  19. Appl. Surf. Sci. no.96 Tyrrell, G. C.; York, T. H.; Coccia, L. G.; Boyd, I. W.
  20. Reference Data on Aoms, Molecules, and Ions Radzig, A. A.; Smirnov, B. M.
  21. Laser Ablation: Principles and Applications Miller, J. C.
  22. J. Phys. Rev. B no.41 Singh, R.; Narayan
  23. J. Mater. Sci. Lett. no.11 Hau, S. K.; Wong, K. H.; Chan, P. W.; Choy, C. L.; Wong, H. K.
  24. Appl. Phys. B no.53 Kelly, R.; Braren, B.
  25. J. Chem. Phys. no.92 Kelly, R.