DOI QR코드

DOI QR Code

Formation and Dissociation Kinetics of Tetraaza-Crown-Alkanoic Acid Complexes of Cerium(Ⅲ)


Abstract

The formation and dissociation rates of $Ce^{3+}$ Complexes of the 1,4,7,10-tetraaza-13,16-dioxacyclooctadecane-NN', N",N"'-tetraacetic acid (1), 1,4,7,10-tetraaza-13,16-dioxacyclooctadecane-N,N',N",N"'-tetramethylacetic acid (2), and 1,4,7,10-tetraaza-13,16-dioxacyclooctadecane-N,N',N",N"'-tetrapropionic acid (3) have been measured by the use of stopped-flow spectrophotometry. Observations were made at 25.0±0.1 ℃ and at an ionic strength of 0.10 M $NaClO_4$. The complexation of $Ce^{3+}$ ion with 1 and 2 proceeds through the formation of an intermediate complex $(CeH_3L^{2+})^*$ in which the $Ce^{3+}$ ion is incompletely coordinated. This may then lead to be a final product in the rate-determining step. Between pH 4.76 and 5.76, the diprotonated $(H_2L^{2-})$ from is revealed to be a kinetically active species despite of its low concentration. The stability constants $(logK(CeH_3L^{2+}))$ and specific water-assisted rate constants $(k_{OH})$ of intermediate complexes have been determined from the kinetic data. The dissociation reactions of $Ce^{3+}$ complexes of 1, 2, and 3 were investigated with $Cu^{2+}$, ions as a scavenger in acetate buffer. All complexes exhibit acid-independent and acid-catalyzed contributions. The effect of buffer and $Cu^{2+}$ concentration on the dissociation rate has also been investigated. The ligand effect on the dissociation rate of $Ce^{3+}$ complexes is discussed in terms of the side-pendant arms and the chelate ring sizes of the ligands.

Keywords

References

  1. Chem. Rev. v.91 Izatt, R. M.;Pawlak, K.;Bradshaw, J. S.;Bruening, R. L.
  2. Tetrahedron v.48 Bradshaw, J. S.;Krakowiak, K. E.;Izatt, R. M.
  3. J. Am. chem. Soc. v.109 Hosseini, M. W.;Lehn J. M.;Jones, K. C.;Plute, K. E.;Mertes, M. P.;Mertes, K. B.
  4. Acc. Chem. Rev. v.23 Mertes, M. P.;Mertes, K. B.
  5. Inorg. Chem. v.29 Brucher, E.;Sherry, A, D.
  6. Inorg. Chem. v.32 Kumar, K.;Chang, C. A.;Tweedle, M. F.
  7. Bull. Chem. Soc. Jpn. v.67 Choi, K. Y.;Kim, K. S.;Kim, J. C.
  8. Bull. Korean Chem. Soc. v.15 Choi, K. Y.;Hong, C. P.
  9. Polyhedron v.13 Choi, K. Y.;Kim, K. S.;Kim, J. C.
  10. Inorg. Chem. v.32 Kumar, K.;Tweedle, M. F.
  11. Inorg. Chem. v.33 Kumar, K.;Jin, T.;Wang, X.;Desreux, J. F.;Tweedle, M. F.
  12. Supramol. Chem. v.8 Choi, K. Y.
  13. Microchem. J. v.55 Choi, K. Y.;Oh, J. J.;Lee, Y. I.
  14. Inorg. Chem. v.30 Brucher, E.;Cortes, S.;Chavez, F.;Sherry, A. D.
  15. Polyhedron v.14 Choi, K. Y.;Kim, D. W.;Hong, C. P.
  16. Supramol. Chem. v.7 Choi, K. Y.;Kang, S. H.;Kim, D. W.;Chung, Y. S.;Kim, C. S.;Oh, J. J.;Hong, C. P.;Lee, Y. I.
  17. Microchem. J. v.53 Choi, K. Y.;Lee, Y. I.;Kil. H. S.;Kim, D. W.;Ching, Y. S.;Kim, C. S.;Hong, C. P.;Sim, W.
  18. Talanta v.44 Choi, K. Y.;Kim, D. W.;Kim, C. S.;Hong, C. P.;Ryu, H.;Lee, Y. I.
  19. Talanta v.35 Amorim, M. T. S.;Delgado, R.;Frausto da Silva, J. J. R.;Vaz, M. C. T. A.;Vilhena, M. F.
  20. Terahedron v.47 Sun, Y.;Martell, A. E.;Welch, M.
  21. Inorg. Chem. v.32 Delgado, R.;Sun, Y.;Motekaitis, R. J.;Martell, A. E.
  22. J. Coord. Chem. v.24 Choi, K. Y.;Choppin, G. R.
  23. The Kinetics and Mechanisms of Reactions of TransitionMetal Complexes Wilkins, R. G.
  24. VCH The determination and Use of Stability Constants Martell, A. E.;Motekaitis, R. J.
  25. Critical Stability Constants v.6 Martell, A. E.;Smith, R. M.
  26. Inorg. Chem. v.27 Kasprzyk, S. P.;Wikins, R. G.
  27. Inorg. Chem. v.21 Kasprzyk, S. P.Wilkins, R. G.
  28. J. Coord. Chem. v.30 Choi, K. Y.;Kim, J. C.;Kim, D. W.
  29. J. Coord. Chem. v.23 Rizkalla, E. N.;Choppin, G. R.