DOI QR코드

DOI QR Code

The $CO_{2}$ Hydrogenation toward the Mixture of Methanol and Dimethyl Ether: Investigation of Hybrid Catalysts

  • Published : 1998.04.20

Abstract

Catalytic hydrogenation of carbon dioxide for the simultaneous synthesis of methanol and dimethyl ether (together called oxygenates) over a combination of methanol synthesis and methanol dehydration catalysts has been studied. Various methanol synthesis and methanol dehydration catalysts were examined for this reaction. The addition of promotors like $Ga_2O_3\; and\; Cr_2O_3$ to Cu/ZnO catalyst gave much more enhanced yield on the formation of oxygenates. From the results, the promotional effect of $Cr_2O_3$ has been explained in terms of increase in the intrinsic activity of Cu while that of $Ga_2O_3$ being increase in the dispersion of Cu. Among the methanol dehydration catalysts examined, the solid acids bearing high population of intermediate-strength acid sites were found to be very effective for the production of oxygenates. HY zeolite which contains strong acid sites produce small amount of hydrocarbons as by-products. However, CuNaY zeolite in which the presence of strong acid sites are minimum gives very high oxygenates yield without the formation of hydrocarbons.

Keywords

References

  1. Catalytic Activation of Carbon Dioxide (ACS Symposium Series 363) Ayers, W. M.(Editor)
  2. Catal. Today v.36 Inui, T.;Hara, H.;Takeguchi, T.;Kim, J. B.
  3. Catal. Today. v.2 Bart, J. C.;Sneeden, R. P. A.
  4. Adv. Catal. v.31 Klier, K.
  5. U.S. Patent 4,536,485 Haldor Topsoe
  6. U.S. Patent 5,189,203 Haldor Topsoe
  7. Appl. Catal. A v.125 Cai, G.;Liu, Z.;Shi, R.;He, C.;Yang, L.;Sun, C.;Chang, Y.
  8. Appl. Catal. A v.138 Saito, M.;Fujitani, T.;Takeuchi, M.;Watanabe, T.
  9. Appl. Catal. v.30 Amenomiya, Y.
  10. Appl. Catal. v.18 Tagawa, T.;Pleizier, G.;Amenomiya, Y.
  11. Chem. Lett. Dubois, J.-L.;Sayama, K.;Arakawa, H.
  12. Proc. 4th Int. Conf. Carbon Dioxide Utiliz. Jun, K.-W.;Jung, M.-H.;Rama Rao, K. S.;Choi, M.-J.;Lee, K.-W.
  13. J. Appl. Catal. v.7 Evans, J. W.;Wainwright, M. S.;Bridgewater, A. J.;Young, D.
  14. Energy Convers. Mgmt v.36 Saito, M.;Fujitani, T.;Takehira, I.;Watanabe, T.;Takeuchi, M.;Kanai, Y.;Moriya, K.;Kakumoto, T.
  15. Energy Convers. Mgmt v.33 Arakawa, H.;Dubois, J.-L.;Sayama, K.
  16. Appl. Catal. A v.121 Fujiwara, M.;Kieffer, R.;Ando, H.;Souma, Y.
  17. J. Catal v.37 Robertson, S. D.;McNicol, B. D.;De Baas, J. H.;Kloet, S. C.;Jenkins, J. W.
  18. Appl. Catal v.8 Tanaka, Y.;Kawamura, C.;Ueno, A.;Kotera, Y.;Takeuchi, K.;Sugi, Y.
  19. J. Catal. v.114 Pan, W. X.;Cao, R.;Roberts, D. L.;Griffin, G. L.
  20. Appl. Catal. A v.115 Sizgek, G. D.;Curry-Hyde, H. E.;Wainwright, M. S.
  21. Appl. Catal. v.60 Robinson, W. R. A. M.;Mol, J. C.
  22. Appl. Catal. v.43 Bartley, C. J. J.;Buch, R.;Chappal, R. J.
  23. J. Catal. v.97 Parris, G. E.;Klier, K.
  24. Korean J. Chem. Eng. v.12 Lee, K. H.;Lee, J. S.
  25. Appl. Catal. v.44 Robinson, W. R. A. M.;Mol, J. C.
  26. J. Catal. v.28 Knozinger, H.;Kochoeft, K.;Meye, W.
  27. J. Catal. v.33 Knozinger, H.;Dautzenberg, D.