- Chalifa, V.; Mohn, H.; Liscovitch, M. J. Biol. Chem. 1990, 265, 17512.
- Okamura, S.; Yamashita, S. J. Biol. Chem. 1994, 269, 31207.
- Massenberg, D.; Han, J.-S.; Liyange, M.; Patton, W. A.; Rhee, S. G.; Moss, J.; Vaughan, M. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 11718.
- 18. Vinggaard, A. M.; Hansen, H. S. Biochim. Biophys.

Acta 1995, 1258, 169.

- 19. Choi, S.-W.; Choi, M. J. Korean Chem. Soc. 1997, 41, 672.
- Jung, K.; Koh, E.; Choi, M. Bull. Korean Chem. Soc. 1989, 10, 585.
- Kim, M. J.; Kim. B.-S.; Lee, S. Y.; Sohn, J. W.; Kim, C. Y.; Choi, M.-S.; Choi, M. Bull. Korean Chem. Soc. 1997, 18, 1204.

A Convenient Preparation of (1S)-(+)-10-Mercaptoisoborneol from (1S)-(+)-10-Camphorsulfonyl Chloride with High Diastereoselectivity

Kwang-Youn Ko* and Kwang-II Kim

Department of Chemistry, Ajou University, Suwon 442-749, Korea Received November 4, 1997

Chiral auxiliaries and catalysts derived from (+)-10-mercaptoisoborneol (exo-2-hydroxy-10-mercaptonorbornane, 1) are used in various asymmetric syntheses.¹⁻⁵ Recently, 1,3-oxathianes 2 prepared from 1 have been used as highly effective chiral catalysts for the asymmetric epoxidation of aldehydes.⁶

According to the literature,¹ thiol 1 was obtained by reduction of (+)-10-camphorsulfonyl chloride (3) with excess lithium aluminum hydride (chloride:hydride=1:4 molar ratio) in ether, followed by chromatographic separation of a 4:1 mixture of 1 and 10-mercaptoborneol (5). Because a large excess of pyrophoric reducing agent is employed, handling of this reagent and acidic workup need a careful manipulation. Also, the stereoselectivity in the ketone reduction is not so high. In this paper, we wish to describe a highly stereoselective method of obtaining 1, which does not use

 $LiAlH_4$, rendering this method applicable to a large scale preparation, as shown in Scheme 1.

First, sulfonyl chloride 3 was converted to (+)-camphor-10-thiol (4) with triphenylphospine in dioxane-water co-solvent.7 Thiol 4 could be easily separated from the reaction mixture by extraction with 5 M NaOH solution followed by acidification and extraction of the resulting thiol with hexanes. Sublimation of the crude product at reduced pressure gave the crystalline ketone 4 in 72% yield. Next, we studied the diastereoselective reduction of ketone 4 (Table 1). Reduction with LiAlH₄ or *i*-Bu₂AlH gave exo-isomer 1 in high selectivity (>95% de). Similarly, NaBH₄ in EtOH showed a high exo-selectivity.8 After reduction, removal of the minor endo-isomer 5 (polar) by silica gel column chromatography (hexanes: ethyl acetate=20:1) gave the diastereomerically pure exo-thiol 1. This thiol is slowly oxidized to the disulfide when exposed to the air. Therefore, it should be kept under an inert atmosphere in a cold place.

Experimental Part

The ¹H and ¹³C NMR spectra were recorded with a Vari-

Table 1. Reduction of ketone 4 with reducing agentsa

Reducing Agent	Solvent	Temp. (°C)	Time	1/5 ^b
LiAlH ₄	THF	- 78	3 h	≥95/5
LiAlH₄	THF	0	3 h	≥95/5
LiAlH₄	ether	- 78	3 h	92/8
LiAlH4	ether	0	3 h	≥95/5
NaBH.	ethanol	rt	2 day	95/5
<i>i</i> -Bu ₂ AlH	toluene	- 78	3 h	95/5

^a Chemical yield was >95% in all cases. ^b The ratio was determined by the integration of two sets of peaks around 3.97 ppm (*exo*) and 4.35 ppm (*endo*) in ¹H NMR spectrum. It should be noted that the ratio determined by the ¹H NMR method can have an error of $\pm 5\%$.

an Gemini 200 spectrometer in CDCl₃ using TMS as an internal standard. The FT-IR spectra were measured on a Nicholet 500 spectrometer as KBr disks. Optical rotations were measured on a Jasco DIP-370 digital polarimeter.

(+)-Camphor-10-thiol (4). A solution of (+)-10-camphorsulfonyl chloride (3, 18.0 g, 71.8 mmol) in a mixture of 240 mL of dioxane and 60 mL of water was treated with triphenylphospine (75.3 g, 287 mmol). The clear mixture was stirred for 2 days at room temperature, and then refluxed for 1 h. The reaction mixture was concentrated in vacuo. The resulting syrupy residue was extracted with hot hexanes (200 mL \times 3). As the hexanes solution cooled to room temperature, a white precipitate (phosphine oxide) was formed, which was discarded. The hexanes solution was extracted with 5 M NaOH solution (100 mL \times 5) and the combined NaOH extract cooled in an ice bath was acidified by careful addition of concentrated HCl (250 mL). The thiol was separated as a white solid, which was extracted with ethyl acetate (200 mL \times 3). The organic solution was dried (Na₂SO₄) and concentrated in vacuo to give a white solid. Finally, purification by vacuum sublimation (125-135 °C, 0.05 mmHg) yielded 9.47 g (72%) of the thiol 4 as a colorless crystal, mp 65-66 °C (lit.⁷ 65-67 °C); $[\alpha]_{D}^{20}$ =+5.2 (c=1.02, CHCl₃); ¹H NMR (CDCl₁) **d** 4.00-3.98 (m, 1H), 2.79 (dd, 1H, J=9.5 and 13 Hz), 2.58 (dd, J=5.3 and 13 Hz), 2.15 (bs, 1H), 1.28 (dd, 1H, J=9.5 and 5.3 Hz), 1.05 (s, 3H), 0.83 (s, 3H), and others; ¹³C NMR (CDCl₃) δ 217.2, 60.3, 47.5, 43.4, 42.9, 26.7, 26.3, 21.0, 20.0, 19.5; IR (KBr) cm⁻¹ 1731.

(15)-(+)-10-Mercaptoisoborneol (1). To a solution of NaBH₄ (2.06 g, 54.2 mmol) in EtOH (100 mL), cooled in an ice bath was added a solution of ketone 4 (5.00 g, 27.1 mmol) in EtOH (20 mL) over 10 min under a nitrogen atmosphere. The whole mixture was stirred for 2 days. Then, the excess NaBH4 was destroyed with dilute HCl solution. The product was extracted with EtOAc (100 mL×2). The combined extract was washed with brine, dried (Na₂SO₄) and concentrated in vacuo. Finally, column chromatography of the residue (eluent; hexanes: EtOAc=20:1) on silica gel gave 4.73 g (93% yield) of the product as a solid, mp 73-74 °C (lit.¹ 76-78 °C; lit.³ 7 0); $[\alpha]_D^{20} = -56.0$ (c=1.15, CHCl₃)

x = 1, 2, 3y = 1, 2, 3 y = 1, 2, 3 Li⁺ S. AlH_x (SR)_y

Figure 1.

(lit.¹ $[\alpha]_{D}^{24} = -55.4$; lit.³ $[\alpha]_{D}^{24} = -57.44$ (c=10, CHCl₃); ¹H NMR (CDCl₃) δ . 3.97 (apparent t, 1H, J=4.7 Hz), 2.79 (dd, 1H, J=9.5, 13 Hz), 2.56 (dd, 1H, J=5.4, 13 Hz), 1.28 (dd, 1H, J=9.5, 5.4 Hz), 1.05 (s, 3H), 0.83 (s, 3H), and others; ¹³C NMR (CDCl₃) δ 76.4, 52.9, 47.4, 45.7, 39.4, 30.3, 26.8, 23.7, 20.5, 19.9; IR (KBr) cm⁻¹ 3467, 2950, 1393, 1373, 1071, 1033.

Acknowledgments. This study is supported by the academic research fund of Korean Ministry of Education (BSRI-96-3149, BSRI-97-3449).

References

- 1. Eliel, E. L.; Frazee, W. J. J. Org. Chem. 1979, 44, 3598.
- Isobe, M.; Obeyama, J.; Funabashi, Y.; Goto, T. Tetrahedron Lett. 1988, 29, 4773.
- De Lucchi, O.; Luccini, V.; Marchioro, C.; Valle, G.; Modena, G. J. Org. Chem. 1986, 51, 1457.
- Annunziata, O.; Cinquini, M.; Cozzi, F.; Farina, S.; Montanari, V. Tetrahedron 1987, 43, 1013.
- Eschler, B. E.; Haynes, R. K.; Kremmydas, S.; Ridley, D. D. J. Chem. Soc., Chem. Commun. 1988, 137.
- Aggarwal, V. K.; Ford, J. G.; Thompson, A.; Jones, R. V. H.; Standen, M. C. H. J. Am. Chem. Soc. 1996, 118, 7004.
- 7. Oae, S.; Togo, H. Bull. Chem. Soc. Jpn. 1983, 56, 3802.
- 8. The high selectivity may be ascribed to the model above (Figure 1) where the carbon-sulfur bond is *anti* to the C1-C7 bond and the hydrogen atom is transferred intramolecularly to the less hindered si face of the carbonyl bond.

Highly Overlapping ¹H NMR Signal Assignments of 12,13-Diepimeric Coenzyme F430 by the Compensated ROESY Experiment

Hoshik Won* and Michael F. Summers[†]

Department of Chemistry, Hanyang University, Ansan 425-791, Korea [†]Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21228, U.S.A. Received November 5, 1997

Coenzyme F430 is a nickel(II)-containing cofactor of the methyl coenzyme M reductase (Component C which was found in the cells of methanogenic bacteria) that is involved in the bio-catalytic reduction of methyl coenzyme M (2-methylthioethanesulfonic acid, CH_3 -S-CoM).^{1,2} Coenzyme

F430 is known to be mediated in the reductive demethylation of methyl coenzyme M, using reducing equivalents from 7-mercaptoheptanoylthreonine phosphate (HS-HTP). The products of this reaction are methane and the heterodisulfide of methyl coenzyme M and HS-HTP (CoM-S-S-HTP).³⁻⁵