DOI QR코드

DOI QR Code

Cathodic Properties of $LiCoO_2$ Synthesized by a Sol-Gel Method for Lithium Ion Battery

  • Published : 1998.01.20

Abstract

$LiCoO_2$ powder was synthesized in an aqueous solution by a sol-gel method and used as a cathode active material for a lithium ion rechargeable battery. The layered $LiCoO_2$ powders were prepared by igniting in air for 12 hrs at 600 ℃ $(600-LiCoO_2)$ and 850 ℃ $(850-LiCoO_2)$. The structure of the $LiCoO_2$ powder was assigned to the space group R bar 3 m (lattice parameters a=2.814 Å and c=14.04Å). The SEM pictures of $600-LiCoO_2$ revealed homogeneous and fine particles of about 1 μm in diameter. Cyclic voltammograms (CVs) of $600-LiCoO_2$ electrode displayed a set of redox peaks at 3.80/4.05 V due to the intercalation/deintercalation of the lithium ions into/out of the $LiCoO_2$ structure. CVs for the $850-LiCoO_2$ electrode had a major set of redox peaks at 3.88/4.13 V, and two small set of redox peaks at 4.18/4.42 V and 4.05/4.25 V due to phase transitions. The initial charge-discharge capacity was 156-132 mAh/g for the $600-LiCoO_2$ electrode and 158-131 mAh/g for the $850-LiCoO_2$ electrode at the current density of 0.2 mA/cm2. The cycleability of the cell consisting of the $600-LiCoO_2$ electrode was better than that of the $850-LiCoO_2$. The diffusion coefficient of the $Li^+$ ion in the $600-LiCoO_2$ electrode was calculated as $4.6{\times}10^{-8}\; cm^2/sec$.

Keywords

References

  1. Solid State Ionics v.69 Brandt, K.
  2. Mat. Res. Bull. v.15 Mithusima, K.;Jones, P.C.;Wiseman, P.J.;Goodnough, J.B.
  3. J. Electrochem. Soc. v.136 Plichta, E.;Slane, S.;Uchiyama, M.;Salmon, M.
  4. J. Electrochem. Soc. v.139 Reinmers, J.N.;Dahn, J.R.
  5. Mat. Res. Bull. v.27 Gummow, R.J.;Thackeray, M.M.
  6. J. Electrochem. Soc. v.141 Ohzuku, T.;Ueda, A.
  7. J. Electrochem. Soc. v.143 Amtucci, G.G.;Tarascon, J.M.;Klein, L.E.
  8. J. Electrochem. Soc. v.140 Ohzuku, T.;Ueda, A.;Nagayama, M.
  9. Solid State Ionics v.69 Ebner, W.;Fouchard, D.;Xie, L.
  10. J. Electrochem. Soc. v.141 Ueda, A.;Ohzuku, T.
  11. Chemistry Letters v.889 Inaba, M.;Todzuka, Y.
  12. J .Solid State Chem. v.88 Bach, S.lHenry, M.;Baffier, N.;Livage, J.
  13. J. Electrochem. Soc. v.139 Guyomard, D.;Tarascon, J.M.
  14. J. Power Sources v.57 Manev, V.;Banov, B.
  15. J. Power Sources v.40 Yoshio, M.;Tanaka, H.;Tominaga, K.;Noguchi, H.
  16. J. Power Sources Jeong, E.D.;Shim, Y.-B.
  17. Solid State Ionics v.89 Choi, Y.-M.;Pyun, S.-I.;Moon, S.-I.
  18. J. Solid State Chem. v.94 Barboux, P.;Tarascon, J.M.;Shokoohi, F.K.
  19. J. Power Sources v.54 Chang, H.S.W.;Lee, T.T.;Lin, S.C.;Jeng, J.H.
  20. J. Power Sources v.54 Garcia, B.;Farcy, J.;Pereira-Ramos, J.P.;Perichon, J.;Baffier, N.
  21. J. Electrochem. Soc. v.141 Hwang, H.;Bruce, P.G.
  22. Solid State Chem. v.88 Bach, S.;Henry, M.;Barrier, N.;Civage, J.
  23. Infrared & Raman spectra of inorganic and Coordination Compounds Nakamoto, K.
  24. J. Appl. Electrochem. v.23 Cabanel, R.;Barral, G.;Diard, J.P.;Le Gorrec, B.;Montella, C.