DOI QR코드

DOI QR Code

Preparation and EPR Characteristics of $ZnGa_2O_4$ : Mn Phosphor

  • Published : 1998.12.20

Abstract

ZnGa2O4: Mn phosphors were prepared by a new chemical process, and their photoluminescence and electron paramagnetic resonance characteristics were investigated. The chemical method showed a low temperature formation of phosphors and a rod-type shape of particles. The strong ultraviolet emission was observed in the undoped ZnGa2O4 phosphor, while strong green emission in the Mn2+-activated ZnGa2O4 phosphor. The green emission intensity of the phosphor prepared by the chemical method was much stronger than that prepared by the conventional method. This difference with preparation methods was interpreted as due to the difference in the distribution of Mn2+ in the host lattice. From EPR results, it was explained that the line intensity of the undoped ZnGa2O4 is associated with the electrical conductivity of this material and the concentration quenching of green luminescence of ZnGa2O4: Mn at higher Mn2+ concentration is attributed to the coupling by exchange interaction between Mn2+ ions.

Keywords

References

  1. J. Lumin v.17 Akagi, K.;Kukimoto, H.;Nakayama, T.
  2. J. Lumin v.16 Oda, S.;Akagi, K.;Kukimoto, H.;Nakayama, T.
  3. J. Electrochem. Soc. v.138 Itoh, S.;Toki, H.;Sato, Y.;Morimoto, K.;Kishino, T.
  4. J. Vac. Sci. Technol. v.A5 Itoh, S.;Yokoyama, M.;Morimoto, K.
  5. J. Electrochem. Soc. v.136 Chang, I.F.;Brownlow, J.W.;Sun, T.I.;Wilson, J.S.
  6. J. Vac. Sci. Technol. v.B12 Vecht, A.;Smith, D.W.;Chadha, S.S.;Gibbons, C.S.;James, K.;David, M.
  7. Chem. Mater. v.10 Li, Y.;Duan, X.;Liao, H.;Qian, Y.
  8. SID Intl. Symp. Digest Tech. Paper Felter, R.E.;Talin, A.A.;Malinowski, M.E.;Chakovskoi, A.G.;Shea, L.;Russ, B.E.;McKittrick, J.;Talbot, J.
  9. Bull. Korean Chem. Soc. v.18 Jo, D.H.;Jung, H.K.;Seok. S.I.;Park, D.S.
  10. J. Appl. Phys. v.81 Yoo, J.S.;Lee, J.D.
  11. MRS Intl. Mtg. Adv. Mats. v.3 Yamada, A.;Watanabe, A.;Haneda, H.;Shirasaki, S.H.
  12. Jpn. J. Appl. Phys. v.3 Yamada, A.;Utsumi, Y.;Watarai, H.;Sato, K.
  13. J. Electrochem. Soc. v.141 Shea, L.E.;Datta, R.K.;Brown, J.J.
  14. J. Electrochem. Soc. v.144 Poort, S.H.M;Cetin, D.;Meijerink, A.;Blasse, G.
  15. J. Appl. Phys. v.79 Yu, C.F.;Lin, P.
  16. J. Appl. Phys. v.78 Tran, T.K.;Park, W.;Tomm, J.W.;Wagner, B.K.;Jacobsen, S.M.;Summers, C.J.;Yocom, P.N.;McClelland, S.K.
  17. J. Mat. Sci. v.29 Koudelka, L.;Horak, J.;Jariabka, P.
  18. Appl. Phys. Lett. v.68 Vanheusden, K.;Seager, C.H.;Warren, W.L.;Tallant, D.R.;Voigt, J.A.
  19. Phys. Rev. B. v.47 Aubay, E.;Gourier, D.
  20. Appl. Phys. Lett. v.64 Omata, T.;Ueda, N.;Ueda, K.;Kawazoe, H.
  21. J. Phys. Soc. Jpn. v.21 Ishikawa, Y.
  22. J. Phys. Chem. Solids v.57 Yu, I.;Isobe, T.;Senna, M.
  23. Phys. Rev. B. v.52 Kennedy, T.A.;Glaser, E.R.;Klein, P.B.