Asymmetric Lithiation-Substitutions of N-Boc Benzylamines Using RLi/Chiral Ligand Complex

Yong Sun Park ${ }^{1 *}$ and Peter Beak*
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U. S. A. Received May 18, 1998

Introduction

The elaboration of benzylamines via dipole-stabilized carbanions has become a useful synthetic method. Recent studies, which have established that reactions of organolithium species complexed to optically pure ligands can lead to highly enantioenriched products, provide a basis for new approaches to asymmetric syntheses of α-substituted benzylamines. ${ }^{2}$ Recently, we reported that N-Boc- N-(p-methoxyphenyl) benzylamines 1 can be lithiated enantioselectively with $n-\mathrm{BuLi} /(\cdot)$-sparteine as a chiral base and that the generated configurationally stable intermediate 2 reacts with electrophiles quite stereospecifically with inversion or retention to provide highly enantioenriched α-substituted benzylamines $3 .^{3}$ In the present work we report the effects of solvents, N -alkyl groups, phenyl ring substituents and chiral ligands on regioselectivity and enantioselectivity of lithiationalkylations of N -Boc- N -alkyl or N -aryl benzylamines 1 .

($\mathrm{Z}=$ Alkyl or Aryl)

Results and Discussion

The sequence with N-Boc- N-methyl benzylamine 4 was carried out by treating 4 with 1.2 equiv of $s-\mathrm{BuLi} /(-)$ sparteine at $-78^{\circ} \mathrm{C}$ for 4 h , followed by addition of methyl iodide. The solvent effects on regioselectivity and enantioselectivity of the reaction are shown in Table 1. The highest enantiomeric ratio (er) and regioselectivity are observed in toluene. The product was obtained with $95: 5$ er in toluene, 83:17 er in cumene, 79:21 er in pentane, 75:25 er in t BuOMe and $72: 28$ er in ether. In THF, 5 was obtained with an er of $32: 68$ with a configuration which is opposite to that obtained in the reaction in toluene (entry 6). ${ }^{4}$ In all solvents, except toluene, the reaction was not regioselective. The products 6 and 7 which result from lithiationsubstitution at the N-methyl group were obtained as minor products in the ratios shown in Tabele $1 .{ }^{5}$ Primary α-deprotonation over secondary α-deprotonation in an unsymmetrical acylic N-Boc amines has been reported. ${ }^{6}$ When TMEDA was used in toluene, regioselectivity in toluene was also poor (entry 7). However, when (-)-sparteine was used in toluene, only the benzylic substituted product 5 was obtained and 6 and 7 were not observed (entry 1).

The low conversion for the reaction with 1.2 equiv of s $\mathrm{BuLj} /(-)$-sparteine in toluene was improved by using an excess (1.5-2.0 equiv) of $s-\mathrm{BuLi} /(-)$-sparteine and longer lithiation time (8 b) as shown in Table 2 (entry 1).

Table 1. Solvent effects on regioselectivity and enantioselectivity

Entry	Solvent	Ligand	5:6:7 ${ }^{\text {a }}$	Yield (\%) ${ }^{\text {a }}$	$\operatorname{er}(S: R)^{h}$
1	toluene	(-)-sparteine	100:0:0	20	95:5
2	cumene	(-)-sparteine	53:35:12	94	83:17
3	pentane	(-)-sparteine	57:24:19	95	$79: 21$
4	t-BuOMe	(-)-sparteine	55:26:19	94	75:25
5	ether	$(-)$-sparteine	59:32:9	95	72:28
6	THF	(-)-sparteine	57:43:0	99	32:68
7	toluene	TMEDA	56:41:3	95	-

${ }^{a}$ The ratios and yields shown are based on GC. ${ }^{b}$ The ers were determined by CSP-HPLC and absolute configuration was determined by comparison of the CSP-HPLC retention time with that of authentic (S)-enantiomer. The errors in er are judged to be ± 2 unless otherwise noted.

Significantly lower enantioselectivity was observed with $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{SO}_{2}$ as the electrophile ($73: 27 \mathrm{er}$) as compared to methyl iodide ($96: 4 \mathrm{er}$). A p - Cl substituent on phenyl ring gave lower enantioselectivity ($90: 10$ er) while OMe gave high enantioselectivity ($98: 2 \mathrm{er}$) as compared to the reaction of 4 . When the N-alkyl group was ethyl, allyl, or benzyl and the electrophile was MeI, the products 7, 16, and 17 were obtained with $95: 5 \mathrm{er}, 78: 22 \mathrm{er}$, and $94: 6$ er respectively (entry 5-7). With an N-cyclopropyl and ethyl iodide as the electrophile 18 was obtained with $78: 22$ er. The reactions of 6,11 and 12 were carried out in several different solvents under the same reaction conditions. When 6 was treated with $s-\mathrm{BuLi} /(-)$-sparteine in THF, 7 was obtained in 93% yield with $42: 58$ er and a configuration which is opposite to that obtained in the reaction in toluene. From the reaction of Boc- N, N-dibenzylamine 11, N-Boc- N-(α-phenylethyl) benzylamine 17 with a $75: 25 \mathrm{er}$ was obtained in ether. The enantiomeric purity of 18 was $87: 13$ er in pentane (13% yield), $72: 28$ er in ether (21% yield), and $54: 46$ er in THF (80% yieid). The reaction of $\mathbf{1 2}$ in THF did not show the solvent controlled reversal of enantioselectivity recently reported by Schlosser for reactions of lithiated N -Boc- N methyl benzylamine. ${ }^{4}$

These results which show that the lithiation-substitution in toluene gives higher enantioselectivity and regioselectivity than in other solvents led us to use toluene for asymmetric fithiation-substitution reactions of the N -Boc benzylamines, even though the reactions in toluene are slower and give lower conversion.

As we have reported previously, we extended our investigation to asymmetric syntheses of α-substituted primary

Table 2. Effects of N-Alkyl group and substituent on phenyl ring

Entry	S.M.	R	Ar	E* P	Product	Yield ${ }^{\text {a }}$ e ${ }^{\text {b }}$	(S:R)
1	4	Methyl	Ph	$\mathrm{CH}_{3} \mathrm{I}$	5	79	96:4
2	4	Methyl	Ph ($\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{SO}_{2}$, 5	64	73:27
3	8	Methyl p	p - ClPh	$\mathrm{CH}_{3} \mathrm{I}$	14	74	90:10
4	9	Methyl p -	- MeOPh	$\mathrm{CH}_{3} \mathrm{I}$	15	58	98:2
5	6	Ethyl	Ph	$\mathrm{CH}_{3} \mathrm{I}$	7	25	95:5
6	10	Allyl	Ph	$\mathrm{CH}_{5} \mathrm{I}$	16	50	78:22
7	11	Benzyl	Ph	$\mathrm{CH}_{3} \mathrm{I}$	17	47	94:6
8	12Cy	yclopropyl	1 Ph	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$	18	27	78:22
9	13	H	Ph	$\mathrm{CH}_{3} \mathrm{I}$	19	32	63:37

${ }^{a}$ The yields are based on GC. ${ }^{\text {b }}$ The ers were determined by CSPHPLC and absolute configurations of $5,7,16,17$ and 19 were determined by comparison of the CSP-HPLC tetention time with that of authentic (S)-enantiomer. The absolute configurations of 14, 15 and 18 were assigned by analogy.
benzylamines by asymmetric alkylation of an activated and protected secondary benzylamine with the removable amine substituent, p-methoxyphenyl group. ${ }^{3}$ We reported that 19 was produced with $97: 3$ er in 81% yield using $n-\mathrm{BuLi} /(-)-$ sparteine and MeOTf and after removing p-methoxyphenyl group with ceric ammonium nitrate (Table 3, entry 3). ${ }^{3 d}$ We investigated a more direct route with N-Boc- N-benzylamine 13. However, reaction of 13 with 2.2 equiv of $s-\mathrm{BuLi} /(-)$ sparteine and methyl iodide gave 19 with only $63: 37$ er in toluene and 56:44 er in ether (Table 2, entry 9).

In search for new synthetically useful chiral ligands which would be readily available in both enantiomeric forms, two different bispidine ligands which contain the core diaza[3.3.1]

Table 3. Effects of chiral ligand and subtituent on phenyl ring

Entry	S.M.	Ar	RLi	Ligand	E^{+}	Product	Yield ${ }^{\text {a }}$	$\begin{gathered} \mathrm{er}^{b} \\ (S: R) \end{gathered}$
1	20	Ph	s-BuLi	sparteine	$\mathrm{CH}_{3} \mathrm{I}$	19	75	92:8
2	20	Ph	n-BuLi	sparteine	$\mathrm{CH}_{3} \mathrm{I}$	19	80	94:6
3	20	Ph	n-BuLi	sparteine	$\mathrm{CH}_{3} \mathrm{OTf}$	19	81	97:3
4	20	Ph	s-BuLi	MMBB	$\mathrm{CH}_{3} \mathrm{I}$	19	87	19:81
5	20	Ph	n-BuLi	MMBB	$\mathrm{CH}_{3} \mathrm{I}$	19	83	30:70
6	20	Ph	s-BuLi	DMBB	$\mathrm{CH}_{3} \mathrm{OTf}$	19	78	20:80
7	20	Pb	n-BuLi	DMBB	$\mathrm{CH}_{3} \mathrm{OTf}$	10	88	11:89
8	$21 p$	$p-\mathrm{F}-\mathrm{Ph}$	n-BuLi	sparteine	$\mathrm{CH}_{3} \mathrm{I}$	23	89	90:10
9	22 m -	-MeOPh	$n-\mathrm{BuLi}$	sparteine	$\mathrm{CH}_{3} \mathrm{I}$	24	77	95:5
10	22m-	-MeOPh	s-BuLi	sparteine	$\mathrm{CH}_{3} \mathrm{I}$	24	72	91:9
11	20	Ph	n - BuLi	none	$\mathrm{CH}_{3} \mathrm{I}$	19	N.R.	-

"Isolated yields. ${ }^{5}$ The ers were determined by CSP-HPLC and absolute configuration of 19 was determined by comparison of the CSP-HPLC retention time with that of authentic (S)enantiomer. The absolute configurations of 23 and 24 were assigned by analogy.

(-) - sparteine

(S) - MMBB

(S.S) - DMBB
ring system of sparteine were investigated. ${ }^{7}$ The [3.3.1] ring system incorporated into a chiral complex mimics the core structure of (- -sparteine and should provide rigidity which reduces conformational possibilities in the enantiodetermining transition state. Use of (S)-MMBB ((S)-3-methyl-7-(1'-phenylethyl)-3,7-diazabicyclic[3.3.1]-nonane) as a ligand for the reaction of $\mathbf{2 0}$ in toluene provided (R)-19 with $19: 81$ er and 30:70 er with $s-\mathrm{BuLi}$ or $n-\mathrm{BuLi}$, and methyl iodide respectively with a configuration which is opposite to that obtained with (-)-sparteine (entry 4, 5). (S, S)-DMBB ((S)-3,7-di(1'-phenylethyl)-3,7-diazabicyclic[3.3.1]-nonane) provided $(R)-19$ with $11: 89$ er in 88% yield, when treated with n BuLi and MeOTf in toluene (entry 7). Neither ligand provided an enantioselectivity as high as (-)-sparteine although DMBB gave a promising result. The substituent on phenyl ring was found to affect the enantioselectivity of the reaction only slightly. Reaction of 21 with a $p-\mathbf{F}$ group showed slightly lower enantioselectivity and reaction of 22 with m-OMe electron-donating substituent group showed slightly higher enantioselectivity (entry 8,10) compared to the reaction of 20 (entry 2). In toluene, the lithiation did not take place without the diamine ligand (entry 11).

Studies of asymmetric lithiation-substitution of N -Boc- N alkyl or N-aryl benzylamines, showed toluene to be the best solvent and that N-subsituent affects the enantioselectivity of the reaction. When the N-substituent was allyl or cyclopropyl, lower enantioselectivity was observed (78:22 er) compared to the reaction with methyl, ethyl, benzyl and p methoxyphenyl N-substituents. Without an N-substituent ($\mathrm{R}=$ H), lowest enantioselectivity ($63: 37 \mathrm{er}$) was observed. Substituents on the phenyl ring change the enantioselectivity only slightly. ($\$$)-MMBB and ($\$, S$)-DMBB provided lower enantioselectivity than (\cdot)-sparteine. Based on our mechanistic studies of lithiation-substitution of N-Boc- N - (p methoxyphenyl) benzylamine 20 and the fact that the S enantiomer is major enantiomer in the reactions of all N -Boc N-alkyl or aryl benzylamines used in this work, we suggest the lithiated configurationally stable intermediate 2 has the (R) configuration and reacts with invertive substitution with $\mathrm{CH}_{3} \mathrm{I}$ in toluene. ${ }^{3 \mathrm{a}}$

Experimental

General Procedure for the Asymmetric Syntheses

 of \boldsymbol{N}-Boc- \boldsymbol{N}-Alkyl or \boldsymbol{N}-Aryl- α-Substituted Benzylamines. To a solution of ($)$)-sparteine (1.2 equiv) in toluene (ca. 0.1 M) at $-78{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.2$ equiv). The reaction mixture was stirred for 15 min at -78 ${ }^{\circ} \mathrm{C}$ and then a solution of a starting material (1.0 equiv) in toluene (ca. 0.2 M) was transferred to the above solution at $-78{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for $1-10 \mathrm{~h}$, and then an electrophile (1.2 equiv) in toluene (ca. 0.2 M) was added after precooling. After stirring for 3 h at $-78^{\circ} \mathrm{C}$, this mixture was allowed to slowly warm to room temperature. Workup consisted of addition of saturated$\mathrm{NH}_{4} \mathrm{Cl}$ solution, extraction with diethyl ether three times, drying over anhydrous MgSO_{4}, filteration and concentration in vacuo. The crude material was purified by chromatography to give the product.

Removal of the p-Methoxyphenyl Group by CAN.
(for 19, 23 and 24): The product was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ $\mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{ca} .0 .05 \mathrm{M})$ and CAN (ceric ammonium nitrate, 2.2 equiv) was added at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 0.5 h , the mixture was diluted with diethyl ether, poured into water and was extracted with diethyl ether. The extracts were combined, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude mixture was further purified by chromatography to give a pure product.
\boldsymbol{N}-(tert-Butyloxycarbonyl)- \boldsymbol{N}-methyl- α-phenethylamine (5). From 110 mg of $4,40 \mathrm{mg}$ (34% isolated yield) of 5 was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 300 MHz) $\delta 7.30-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.48$ (br, $1 \mathrm{H}, \mathrm{N}-\mathrm{CH}-\mathrm{Ph})$, 2.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), $1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.48(\mathrm{~d}, J=6.4$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right) ;{ }^{3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 155.7,141$. 3, 128.1, 126.8, 126.7, 79.2, 52.3, 28.3, 28.2, 16.2; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}: \mathrm{C}, 71.46 ; \mathrm{H} \mathrm{8.99}$; N, 5.95. Found: C, $71.59 ; \mathrm{H}, 9.12 ; \mathrm{N}, 6.56$. The enantiomeric ratio of 5 was determined to be $96: 4$ in favor of the S enantiomer by chiral HPLC using racemic material as a standard and the absolute configuration was assigned by comparison of CSPHPLC retention time with authentic material prepared from commercially available (S)- α-methylbenzylamine. (Whelk-0 column; 0.5% 2-propanol in hexane; $1.25 \mathrm{~mL} / \mathrm{min}$; The S enantiomer (major) had a retention time of 10.1 min , and the R-enantiomer (minor) had a retention time of 9.1 min).
\boldsymbol{N}-(tert-Butyloxycarbonyl)- \boldsymbol{N}-ethyl- $\boldsymbol{\alpha}$-phenethylamine (7). From 193 mg of $6,18 \mathrm{mg}$ (9% isolated yield) of 7 was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz})$ § $7.28-7.16(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.42(\mathrm{br}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}-\mathrm{Ph}), 3.08$ (br, $1 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{4} \mathrm{H}_{6} \mathrm{CH}_{3}$), 2.90 (br, $1 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{4} \mathrm{H}_{6} \mathrm{CH}_{3}$), 1.50 (d, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.95(\mathrm{br}, 3 \mathrm{H}$, $\mathrm{N}-\mathrm{CH}_{3} \mathrm{H}_{\mathrm{p}} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) $\delta 155.4,141.9$, $128.9,128.0,126.7,79.1,53.7,37.9,28.2,17.3,15.0$; HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2}: 249.1729$ Found: 249.1730. The enantiomeric ratio of 7 was determined to be $95: 5$ in favor of the S enantiomer by chiral HPLC using racemic material as a standard and the absolute configuration was assigned by comparison of CSP-HPLC retention time with authentic material prepared from commercially available (S)-α-methyl-benzylamine. (Whelk-0 column; 0.5% 2-propanol in hexane; $1.0 \mathrm{~mL} / \mathrm{min}$; The S-enantiomer (major) had a retention time of 12.1 min , and the R-enantiomer (minor) had a retention time of 9.8 min).
\boldsymbol{N}-(tert-Butyloxycarbonyl) $\boldsymbol{N} \cdot$ methyl- $\alpha \cdot p$-chlorophenethylamine (14). From 95 mg of $8,50 \mathrm{mg}$ (50% isolated yield) of 14 was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.30-7.12(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 4.38$ (br, $1 \mathrm{H}, \mathrm{N}-\mathrm{CH} \cdot \mathrm{Ph}$), 2.56 (s, 3H, N-CH3), 1.48 (br, 12H, CH$\left.\mathrm{CH}_{3}+\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 155.8,139.8$, 132.8, 128.3, 79.6, 51.6, 28.3, 28.2, 16.0; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{2 \mathrm{~A}} \mathrm{NO}_{2} \mathrm{Cl}: 269.1183$, Found: 269.1183 . The enantiomeric ratio of 14 was determined to be $90: 10$ by chiral HPLC using racemic material as a standard and the absolute configuration was assigned by analogy. (Whelk-0 column; 1.0% 2-propanol in hexane; $1.25 \mathrm{~mL} / \mathrm{min}$; The S-enantiomer (major) had a retention time of 7.9 min , and the R -
enantiomer (minor) had a retention time of 6.8 min).
\boldsymbol{N}-(tert-Butyloxycarbonyl)- \boldsymbol{N}-methyl- $\boldsymbol{\alpha}$ - \boldsymbol{p}-methoxyphenethylamine (15). From 84 mg of $9,17 \mathrm{mg}$ (22% isolated yield) of 15 was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.20-6.83(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 4.35$ (brs, $1 \mathrm{H}, \mathrm{N}-\mathrm{CH}-\mathrm{Ph}), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.54(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-$ $\left.\mathrm{CH}_{3}\right), 1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45\left(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 158.4,155.8,133.3,128.0$, $113.5,79.3,55.1,51.6,28.4,28.3,16.2$, HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}: 265.1678$, Found: 265.1675. The enantiomeric ratio of 15 was determined to be $98: 2$ by chiral HPLC using racemic material as a standard and the absolute configuration was assigned by analogy. (Whelk-0 column; $1.5 \% 2$-propanol in hexane; $1.25 \mathrm{~mL} / \mathrm{min}$; The S-enantiomer (major) had a retention time of 11.9 min , and the R enantiomer (minor) had a retention time of 10.6 min).
\boldsymbol{N}-(tert-Butyloxycarbonyl)- \boldsymbol{N}-allyl- α-phenethylamine (16). From 28 mg of $10,8 \mathrm{mg}$ (28% isolated yield) of 16 was obtained as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 300 MHz) $\delta 7.39-7.19(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.72-5.65(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}=$ CH_{2}), 5.38 (br, $\left.1 \mathrm{H}, \mathrm{N}-\mathrm{CH}-\mathrm{Ph}\right), 5.04-4.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 3.73 (br, $1 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3} \mathrm{H}_{\mathrm{b}}$), 3.46 (br, $1 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}}$), 1.52 (d, $\mathrm{J}=$ $\left.7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. The spectral data of 16 were identical to those of authentic material reported previously. The enantiomeric ratio of 16 was determined to be $78: 22$ in favor of the S enantiomer by chiral HPLC using racemic material as a standard and the absolute configuration was assigned by comparison of CSPHPLC retention time with authentic material prepared from commercially available (S)- α-methylbenzylamine. (Whelk-0 column; 0.5% 2-propanol in hexane; $1.25 \mathrm{~mL} / \mathrm{min}$; The S enantiomer (major) had a retention time of 9.2 min , and the R-enantiomer (minor) had a retention time of 6.7 min).
\boldsymbol{N}-(tert-Butyloxycarbonyl)- \boldsymbol{N}-benzyl- α-phenethylamine (17). From 323 mg of $11,71 \mathrm{mg}(21 \%$ isolated yield) of 17 was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 300 MHz) $\delta 7.51-7.03(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 5.58\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\right.$ Ph), 4.43 (br, $1 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3} H_{\mathrm{t}}-\mathrm{Ph}$), 4.03 (br, $1 \mathrm{H}, \mathrm{CHPh}$), 1.44 (d, J=7.2 Hz, 3H, CHCH3), $1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 156.0,141.7,139.9,128.2,128.0,127.0$, $126.8,126.7,126.4,79.8,53.6,47.2,28.3,17.8$; Anal. Caled for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{NO}_{2}: \mathrm{C}, 77.13 ; \mathrm{H} \mathrm{8.10}$; $\mathrm{N}, 4.50$. Found: C, $77.08 ; \mathrm{H}, 8.14 ; \mathrm{N}, 4.47$. The enantiomeric ratio of 17 was determined to be $94: 6$ in favor of the S-enantiomer by chiral HPLC using racemic material as a standard and the absolute configuration was assigned by comparison of CSPHPLC retention time with authentic material prepared from commercially available (S)- α-methylbenzylamine. (Whelk-0 column; 0.5% 2-propanol in hexane; $0.75 \mathrm{~mL} / \mathrm{min}$; The S enantiomer (major) had a retention time of 23.8 min , and the R-enantiomer (minor) had a retention time of 15.1 min).
\boldsymbol{N}-(tert-Butyloxycarbonyl)- \boldsymbol{N}-(1-phenpropyl)- α cyclopropylamine (18). From 111 mg of $12,14 \mathrm{mg}$ (11% isolated yield) of 18 was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.30-7.21(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.92$ (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Ph}), 2.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.13$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{PhCHCH} 2), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 157.3,142.2,127.9,127.1,126.6,79.4,62.1,28$. 3, 27.8, 24.1, 11.4, 7.9, 7.1; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, 74.14; H 9.15; N, 5.09. Found: C, 73.82; H, 9.40; N, 5.48.

The enantiomeric ratio of 18 was determined to be $78: 22$ in favor of the S-enantiomer by chiral HPLC using racemic material as a standard and the absolute configuration was assigned by analogy. (Whelk-0 column; $0.05 \% 2$-propanol in hexane; $1.25 \mathrm{~mL} / \mathrm{min}$; The S-enantiomer (major) had a retention time of 18.4 min , and the R-enantiomer (minor) had a retention time of 24.6 min).
\boldsymbol{N}-(tert-Butyloxycarbonyl)- α-methylbenzylamine (19). From 619 mg of $\mathbf{2 0}, 354 \mathrm{mg}$ (81%) of 19 was obtained as a white solid (Table 3, Entry 3). mp 68.5-70.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 7.34-7.21(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$, 4.90-4.77 (br, $2 \mathrm{H}, \mathrm{NH}+\mathrm{N} \cdot \mathrm{CH}-\mathrm{Ph}$), 1.44-1.42 (s and d, 12 H , $\left.\mathrm{CHCH}_{3}+\mathrm{C}\left(\mathrm{CH}_{3}\right)_{7}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, 75 \mathrm{MHz}$) $\delta 155.0,144$. $0,128.4,127.0,125.8,79.2,50.1,28.3,22.6$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 70.56 ; H 8.65; $\mathrm{N}, 6.33$. Found: $\mathrm{C}, 70.47$; $\mathrm{H}, 8.60 ; \mathrm{N}, 6.40$. The enantiomeric ratio of 19 was determined to be $97: 3$ in favor of the S-enantiomer by chiral HPLC using racemic material as a standard and the absolute configuration was assigned by comparison of CSPHPLC retention time with authentic material prepared from commercially available (S)- α-methylbenzylamine. (Whelk-0 column; 20% 2-propanol in hexane; $2.0 \mathrm{~mL} / \mathrm{min}$; The S enantiomer (major) had a retention time of 8.0 min , and the R-enantiomer (minor) had a retention time of 5.7 min).
$\boldsymbol{N} \cdot($ tert-Butyloxycarbonyl)- $\alpha \cdot$ methyl-p-fluorobenzylamine (23). From 150 mg of 21, 96 mg (89%) of 23 was obtained as a white solid. mp $99-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.27-6.95(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 4.87(\mathrm{br}, 1 \mathrm{H})$, 4.75 (br, 1H), $1.40\left(\mathrm{br}, 12 \mathrm{H}, \mathrm{CHCH}_{3}+\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (two rotomers $\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(162.9,160.4), 154.9$, 139.7, (127.3, 127.2), (115.2, 115.0), 79.3, 49.4, 28.2, 22.6; HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{FNO}_{2}$: 239.1322 Found: 239.1323. The enantiomeric ratio of 23 was determined to be $90: 10$ by chiral HPLC analysis of the corresponding 3,5 -dinitrobenzoyl derivative on a Pirkle column packed with (S) N naphthylfeucine using racemic material as a standard and the absolute configuration was assigned by analogy. ($30 \% 2$ propanol in hexane; $2.0 \mathrm{~mL} / \mathrm{min}$; The S-enantiomer (major) had a retention time of 4.6 min , and the R-enantiomer (minor) had a retention time of 3.9 min).
\boldsymbol{N}-(tert-Butyloxycarbonyl)- $\boldsymbol{\alpha}$-methyl-m-methoxybenzylamine (24). From 211 mg of $22,119 \mathrm{mg}$ (77%) of 24 was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 7.27-6.77(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 4.78$ (brs, 2 H), $3.80(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 1.45\left(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 159.7,155.1,129.57,129.56$,
$118.1,112.3,111.7,79.4,55.2,45.5,28.4,22.7$; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}$: 251.1521 Found: 251.1524. The enantiomeric ratio of 24 was determined to be $95: 5$ by chiral HPLC analysis of the corresponding 3,5 -dinitrobenzoyl derivative on a Pirkle column packed with (S)-Nnaphthylleucine using racemic material as a standard and the absolute configuration was assigned by analogy. (20% 2propanol in hexane; $2.0 \mathrm{~mL} / \mathrm{min}$; The S-enantiomer (major) had a retention time of 12.3 min , and the R-enantiomer (minor) had a retention time of 7.6 min).
Acknowledgment. We are grateful to the Nationai Institute of Health (GM-18874) for support of this work. Finantial support to YSP from Kon-kuk University is gratefully acknowledged.

References

1. Current address: Department of Chemistry, Kon-kuk University, Seoul, 143-701 Korea
2. (a) Beak, P.; Basu, A.; Gallagher, D. J.; Park, Y. S. Thayumanavan, S. Acc. Chem. Res. 1996, 29, 552 . (b) Hoppe, D.; Hense, T. Angew. Chem. Int. Ed. Engl. 1997, 36, 2283. (c) Schlosser, M.; Limat, D. J. Am. Chem. Soc. 1995, 117, 12342. (d) Voyer, N.; Roby, J. Tetrahedron Lett. 1995, 36, 6627.
3. (a) Faibish, N. C.; Park, Y. S.; Lee, S.; Beak, P. J. Am. Chem. Soc. 1997, 119, 11561. (b) Park, Y. S.; Weisenburger, G. A.; Beak, P. J. Am. Chem. Soc. 1997, 119, 10537. (c) Park, Y. S.; Beak, P. J. Org. Chem. 1997, 62, 1574. (d) Park, Y. S.; Boys, M. L.; Beak, P. J. Am. Chem. Soc. 1996, 118, 3757.
4. This result is similar to the result reported by Schlosser group. ${ }^{2 c}$ They reported that deprotonation of 4 with s $\mathrm{BuLi} /(\cdot)$-sparteine is highly asymmetric but racemization is rapid and that the configuration of the subsequent asymmetric substitution is highly solvent dependent. They reported 10:90 er in THF with methyl iodide and we observed $32: 68$ er.
5. Voyer and Roby reported that when 4 was treated with s $\mathrm{BuLi} /(-)$-sparteine and CO_{2} in ether, N -methyl substituted product was obtained in 5% yield along with the benzyl substituted product in 52% yield with $80: 20$ er. ${ }^{2 \mathrm{~d}}$
6. Snieckus, V.: Roger-Evans, M.; Beak, P.; Lee, W. K.; Yum, E. K.; Freskos, J. Tetrahedron Lett. 1994, 35, 4067.
7. Gallagher, D. J.; Wu, S.; Nikolic, N. A.; Beak, P. J. Org. Chem. 1995, $60,8148$.
