DOI QR코드

DOI QR Code

Crystal Structure of a Benzene Sorption Complex of Dehydrated Fully $Cd^{2+}$-Exchanged Zeolite X

  • Published : 1998.11.20

Abstract

The crystal structure of a benzene sorption complex of fully dehydrated Cd2+-exchanged zeolite X, Cd46Si100Al92O384·43C6H6 (a=24.880(6) Å), has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21 ℃. The crystal was prepared by ion exchange in a flowing stream of 0.05 M aqueous Cd(NO3)2 for 3 d, followed by dehydration at 400 ℃ and 2 x 10-6 Torr for 2 d, followed by exposure to about 92 Torr of benzene vapor at 22 ℃. The structure was determined in this atmosphere and refined to the final error indices R1=0.054 and Rw=0.066 with 561 reflections for which I > 3σ(I). In this structure, Cd2+ ions are found at four crystallographic sites: eleven Cd2+ ions are at site 1, at the centers of the double six-oxygen rings; six Cd2+ ions lie at site I', in the sodalite cavity opposite to the double six-oxygen rings; and the remaining 29 Cd2+ ions are found at two nonequivalent threefold axes of unit cell, sites Ⅱ' (in the sodalite cavity ) and site Ⅱ (in the supercage) with occupancies of 2 and 27 ions, respectively. Each of these Cd2+ ions coordinates to three framework oxylkens, either at 2.173(13) or 2.224(10) Å, respectively, and extends 0.37 Å into the sodalite unit or 0.60 Å into the supercage from the plane of the three oxygens to which it is bound. The benzene molecules are found at two distinct sites within the supercages. Twenty-seven benzenes lie on threefold axes in the large cavities where they interact facially with the latter 27 site-Ⅱ Cd2+ ions (Cd2+-benzene center=2.72 Å; occupancy=27 molecules/32 sites). The remaining sixteen benzene molecules are found in 12ring planes; occupancy=16 molecules/16 sites. Each hydrogen of these sixteen benzenes is ca. 2.8/3.0 Å from three 12-ring oxygens where each is stabilized by multiple weak electrostatic and van der Waals interactions with framework oxygens.

Keywords

References

  1. Zeolites v.15 Olson, D. H.
  2. J. Phys. Chem. v.74 Olson, D. H.
  3. J. Chem. Soc., Chem. Commun. Fitch, A. N.;Jobic, H.;Renoupez, A.
  4. J. Phys. Chem. v.90 Fitch, A. N.;Jobic, H.;Renoupez, A.
  5. Zeolites v.5 Van Dun, J. J. I.;Mortier, W. J.;Uytterhoeven, J. B.
  6. J. Phys. Chem. v.99 Vitale, G.;Bull, L. M.;Morris, R. E.;Cheetham, A. K.
  7. J. Phys. Chem. v.93 Demonis, P.;Yashonath, S.;Klein, M. L.
  8. Zeolites v.6 Bogomolov, V. N.;Petranovskii, V. P.
  9. J. Phys. Chem. B v.101 Jang, S. B.;Yeom, Y. H.;Jeong, M. S.;Kim, Y.;Seff, K.
  10. International Tables for X-ray Crystallography v.IV
  11. Reference 11
  12. Science v.259 Sun, T.;Seff, K.;Heo, N. H.;Petranovskii, V. P.
  13. Chem. Rev. v.94 Sun, T.;Seff, K.
  14. J. Phys. Chem. B v.101 Yeom, Y. H.;Jang, S. B.;Kim, Y.;Song, S. H.;Seff, K.
  15. Handbook of Chemistry and Physics(70th ed.) Themical Rubber Co.
  16. Can. J. Phys. v.32 Stoicheff, B. P.
  17. J. Phys. Chem. B v.100 Kwon, J. H.;Jang, S. B.;Kim, Y.;Seff, K.
  18. MolEN Calculations were performed with Structure Determination Package programs Enraf-Nonius
  19. Zeolites v.19 Jang, S. B.;Jeong, M. S.;Kim, Y.;Song, S. H.;Seff, K.
  20. J. Phys. Chem. B v.101 Yeom, Y. H.;Kim, Y.;Song, S. H.;Seff, K.
  21. Elsevier v.105 Progress in Zeolites and Porous Materials, Studies in Science on Catalysis Jang, S. B.;Kwon, J. H.;Song, S. H.;Kim, Y.;Seff, K.
  22. Proceedings of the 10th International Zeolite Conference Henson, N. J.;Cheetham, A. K.;Redondo, A.;Levine, S. M.;Newsam, J. M.;Weitkamp, J.(et al.)(Eds.)
  23. J. Phys. Chem. v.93 Demonis, P.;Yashonath, S.;Klein, Y.;
  24. J. Phys. Chem. B v.102 Yeom, Y. H.;Kim, A. N.;Kim, Y.;Song, S. H.LSeff, K.