Epoxide Opening and Bergman Cyclization of Tricyclic Enediyne Models Possessing A Methoxy Group

Yong Pyo Hong* and Soon Ho Kwon
Department of Chemistry, Andong National University, Andong 760.749, Korea Received July 30, 1998

Dynemicin A (1) is a potent antitumor antibiotic containing enediyne and anthraquinone structures. ${ }^{1}$ Its biological action to cleave DNA strand has been attributed to the enediyne's ability to form a phenylene diradical. ${ }^{2}$ It has been known that the activation of $\mathbf{1}$ is triggered by epoxide opening induced by developing electron density at C9.3 Accordingly, use of proper substituent on the benzene ring of a model compound (i.e., 2a) can accumulate electron density at Cla and then, the epoxide opening and Bergman cyclization to give a diradical will be accelerated. We reported in a previous paper that the existence of electron donating group at C3 activates the epoxide opening. ${ }^{4}$ We now communicate the acid-induced epoxide opening and Bergman cyclization for tricyclic dynemicin A models 2a, 3a, and 4 a which have methoxy group at C3.

Dynemicin A (1)

New Models
2a: $n=0,3 a: n=1,4 a: n=2$

Model compounds were easily prepared by the known synthetic method of tricyclic enediyne compound related to dynemicin A. ${ }^{5}$ Scheme 1 shows a synthetic procedure of enediyne model compound 2 a starting from 3 -substituted quinoline derivative 5 . ${ }^{6}$ The cyclized product 14 was finally acetylated to give the target model $2 a$ to protect pinacolpinacolone rearrangement under Bergman cyclization condjtion. On the other hand, benzenediyne 3 a and naphthalenediyne 4a were prepared by similar synthetic methods starting from the intermediate 10 using 1-iodo-2-(trimethylsilyl)ethynylbenzene and naphthalene 1,2 -ditriflate, respectively instead of vinyl chloride 11 ,'

The acid-induced epoxide opening followed by Bergman cyclization for compounds 2a, 3a, and 4a were performed with p-toluenesulfonic acid in benzene/1,4-cyclohexadiene (3/ 1) at $40{ }^{\circ} \mathrm{C}$ (Scheme 2). Table 1 shows the reaction times for the reaction. Expectedly, conversion to the corresponding diols was very fast in comparison with C3 unsubstituted model which needed $80 \mathrm{~min} .^{8}$ Enediyne 2a gave Bergman reaction product 2 c in 8 minutes via its epoxide opened product $\mathbf{2 b}$ which was detected only as a trace amount on TLC. The epoxide groups of compounds 3 a and 4 a were opened to give bezenediynediol $\mathbf{3 b}$ and naphthalenedi-

Scheme 1. Synthesis of Model Compound 2a. Reagents and conditions: (a) 1.2 equiv of $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 89 \%$; (b) $\mathrm{Ac}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 98 \%$; (c) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (catalytic), $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 7 \mathrm{~h}$, 97%; (d) 1.7 equiv of PCC, $4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$, $1 \mathrm{~h}, 79 \%$; (e) 1.1 equiv of ' $\mathrm{BuMe}_{2} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}, 1.5$ equiv of 2,6 lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 96 \%$; (f) 1.2 equiv of ethynylmagnesium bromide, 1.1 equiv of $\mathrm{PhOCOCl}, \mathrm{THF},-78$ ${ }^{\circ} \mathrm{C}$ to $25{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$ and then, dil. $\mathrm{HCl}, 100 \%$; (g) 1.5 equiv of $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 25 \mathrm{~min}, 68 \%$; (h) 1.6 equiv of $11,0.06$ equiv of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 0.24$ equiv of $\mathrm{CuI}, 2.0$ equiv of ${ }^{{ }^{~} \mathrm{BuNH}_{2} \text {, }}$ benzene, $25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 59 \%$; (i) 4.0 equiv of $\mathrm{AgNO}_{3}, 7.0$ equiv of $\mathrm{KCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, THF $25^{\circ} \mathrm{C}, 10 \mathrm{~min}, 82 \%$; (j) 1.0 equiv of LDA, toluene, $-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 61 \%$; (k) 20.0 equiv of $\mathrm{Ac}_{2} \mathrm{O}, 0.4$ equiv of DMAP, pyridine, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 87 \%$.
yenediol 4b in 10 and 35 minutes, respectively. Their intermediates were identified on TLC. Moreover, the naphthalene derivative $\mathbf{4 b}$ was thermodynamically very stable under the reaction condition. It is thought that the rate difference for the epoxide opening is related to other factors such as steric effect as well as electronic effect. On the other hand, compound 3a and $\mathbf{4 a}$ aromatized to yield Bergman

Scheme 2. Epoxide Opening and Bergman Cyclization for Model compounds. Reagent and condition: (a) 1.2 equiv of p TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$, benzene $/ 1,4-$ cyclohexadiene ($3 / 1$), $40^{\circ} \mathrm{C}$.

Table 1*. Reaction Times for Model Compounds ${ }^{9}$

Substrate	Reaction time (min)	Product	Yield (\%)
$\mathbf{2 a}$	-	$\mathbf{2 b}$	-
	8	$\mathbf{2 c}$	77
3a	10	$\mathbf{3 b}$	-
	30	$\mathbf{3 c}$	77
4a	35	$\mathbf{4 b}$	-
	90	$\mathbf{4 c}$	51

*Reaction progress was monitered by TLC. All reactions were run in duplicate and the reaction time was averaged. R_{f} values for each compound in ethyl acetate/hexane (1/2) are as follows; 2a 0.57 , 2c 0.31 , 3a $0.56,3 \mathrm{~b} 0.16,3 \mathrm{c} 0.29,4 \mathrm{a} 0.59,4 \mathrm{~b} 0.12,4 \mathrm{c}$ 0.26 .
cyclization products 3 c and 4 c in 30 minutes and in 90 minutes, respectively. Especially, naphthalenediyne 4 a was about 50% converted to 4 c during this time, and remained unchanged for a prolonged reaction time. Our experimental result confirmed that the epoxide opening is a triggering step of dynemicin A activation and enediyne system affects both epoxide opening and Bergman cyclization.

In summary, the introduction of methoxy group at C3 of tricyclic dynemicin A model compounds activated the epoxide opening and Bergman cyclization under acidic conditions. This fact suggests that tricyclic model compounds with methoxy group at C3 can be developed as new anticancer drugs. For further study, we are now preparing dynemicin A mimics which have a methoxy group at C 3 , a base-labile protecting group at N5, and an H at C10. Finally, biological activity test such as DNA cleavage or cytotoxicity will be performed for all the model compounds.

Acknowledgment. This research was supported by the Basic Science Research Institute Program, Ministry of Education, Korea (BSRI-97-3402).

References

1. Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H.; VanDuyne, G. D.; Clardy, J. J. Antibot. 1989, 42, 1449.
2. Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1973, 6, 25.
3. (a) Sugiura, Y.; Shiraki, T.; Konishi, M.; Oki, T. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 3831. (b) Langley, D.
R.; Doyle, T. W.; Beveridge, D. L. J. Am. Chem. Soc. 1991, 113, 4395.
4. (a) Hong, Y. P.; Woo, L. Bull. Korean Chem. Soc. 1997, 18, 229. (b) Hong, Y. P.; Woo, L. J. Korean Chem. Soc. 1998, 42, 1.
5. (a) Nicolaou, K. C.; Dai, W.-M.; Wendeborn, S. V. Angew. Chem. Int. Ed. Engl. 1991, 30, 1032. (b) Nicolaou, K. C.; Smith, A. L.; Wendeborn, S. V.; Hwang, C.-K. J. Am. Chem. Soc. 1991, 113, 3106. (c) For total synthesis of dynemicin A, see Myers, A. G.; Fraley, M. E.; Tom, N. J.; Cohen, S. B.; Madar, D. J. Chemistry \& Biology 1995, 2, 33.
6. Hong, Y. P.; Ryu, H. H.; Park, B. S. Bull. Korean Chem. Soc. 1995, 16, 1000.
7. Nicolaou, K. C.; Dai, Hong, Y. P.; Tsay, S.-C.; Baldrige, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1993, 115, 7844.
8. Ryu, H. H.; Hong, Y. P. Bull. Korean Chem. Soc. 1996, $17,831$.
9. All isolable compounds were confirmed by spectroscopic methods. For example, compound $\mathbf{2 a},{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta=7.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.42-7.36(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.31-7.15(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 7.06 (br $\mathrm{s}, 1 \mathrm{H}$, aromatic), 6.78 (dd, $J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 5.91 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.73 (dd, $J=10.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.55 (br s, $1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{C}$), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.55-2.50 (m, 1H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.39-2.00 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right), 1.79-1.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=169.6,159.4,151.4,137.5,131.2,129.8$, 128.7, 126.2, 124.7, 123.3, 121.9, 120.0, 112.9, 111.7, $98.1,95.8,94.3,89.1,78.2,73.8,63.5,55.7,51.0,29.9$, 23.3, 22.3, 18.9. Compound 3c, ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta=$ 8.07 (br s. 1 H , aromatic), $8.00 .7 .97(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $7.86-7.82(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $7.83(\mathrm{~s}, 1 \mathrm{H}$, aromatic), $7.54-$ $7.47(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $7.37-7.28(\mathrm{~m}, 5 \mathrm{H}$, aromatic), 6.98 (br $\mathrm{s}, 1 \mathrm{H}$, aromatic), 6.66 (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 5.90 (br s, $1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{C}$), $5.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $5.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.17 .3 .07(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.25-2.16 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(=$ O) CH_{3}), 2.10-2.02 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.81-1.74 (m, 1 H , $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), \quad 1.52-1.46\left(\mathrm{~m}, \quad 1 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \quad$ NMR (DMSO- d_{6}): $\delta=170.7,157.8,151.1,137.9,136.1,133.0$, $132.7,132.3,130.8,129.3,128.3,127.7,127.5,126.9$, $126.4,126.3,125.5,124.2,123.2,121.9,109.1,107.5$, $91.7,75.0,69.3,63.7,54.8,32.4,32.3,22.7,19.4$. Compound $4 \mathrm{~b},{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta=8.12$ ($\mathrm{d}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}$, aromatic), $8.05(\mathrm{~s}, 1 \mathrm{H}$, aromatic), $7.91(\mathrm{~s}, 1 \mathrm{H}$, aromatic), $7.89-7.85(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.56-7.52(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.44-7.39(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.27 .7 .20(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 6.98 (br s, 1 H , aromatic), 6.78 (dd, $J=9.1,2.7$ $\mathrm{Hz}, 1 \mathrm{H}$, aromatic), 6.31 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 5.61 (br s, 1 H , $\mathrm{OH}), 5.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHC} \mathrm{C}), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.85-$ $2.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right), 2.24-$ $2.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.10-1.83\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.72-$ $1.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=168.0$, $158.0,153.1,151.0,136.1,132.0,131.7,130.6,129.4$, $128.1,128.0,127.9,127.8,127.7,127.6,125.6,125.1$, $124.0,123.0,121.8,111.1,110.0,97.3,97.0,88.8,85.8$, $81.8,75.3,74.6,56.8,55.0,34.5,32.2,22.2,18.1$.
