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THE SZEGO KERNEL AND A
SPECIAL SELF-CORRESPONDENCE

MooNJjA JEONG

ABSTRACT. For a smoothly bounded n-connected domain Q in C, we get a formula
representing the relation between the Szegé kernel associated with 2 and holomorphic
mappings obtained from harmonic measure functions. By using it, we show that the
coeflicient of the above holomorphic map is zero in doubly connected domains.

1. Introduction

The Szeg6 kernel associated to a bounded domain in the plane carries plenty of
information about the domain as the Bergman kernel does. Conformal mappings
onto canonical domains can be expressed simply in terms of the Bergman kernel
and the Szegd kernel. Hence it is possible to know the property of the conformal
mappings by inspecting the Bergman kernel and the Szeg$ kernel. So our concern
is to find the transformation formulas of the Bergman kernel and the Szeg6 kernel
and to know the relation between them and other classical functions.

Now we suppose that €2; and 22 are two bounded domains in C and that f
is a proper holomorphic mapping of ©; onto 2. There are a positive integer m
and holomorphic mappings Fi, F3, - - , Fi, which are m local inverses to f defined
locally on Q2 — V where V = {f(2)|f'(z) = 0}. Bell [1] proved that the Bergman
kernel functions transform under proper holomorphic mappings exactly as under
biholomorphic mappings as follows:

" Ko, (2 F;(w) Fj(w) = Ko, (f(2),0)1'(2) (1)
=1
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for z € Q; and w € Qy where Kq, denotes the Bergman kernel function associated
to §; for 4 = 1, 2. From the above formula, we can get many important applications
(see 1, 2, 3, 9]).

But, we got only a few results for the Szeg§ kernel. The author [8] proved
the transformation formula for the Szeg6 kernel under proper holomorphic map
of a multiply connected planar domain onto a simply connected planar domain
and it was generalized under proper holomorphic correspondence between multiply
connected planar domains (see [7]). Since the zeroes of the Szeg$ kernel are parts
of the zeroes of the Ahlfors map and give rise to a particular basis for the Hardy
space H2(bQ) (see [5]), they can be the powerful tools for getting the properties of
the mapping for planar domains.

In this note, we prove an important formula representing the relation between the
Szegb kernel function and holomorphic mappings obtained from harmonic measure
functions by using the behavior of the zeroes of the Szeg6é kernel. We can use it
to show that the coefficient of the holomorphic map is zero in doubly connected

domains.

2. Preliminaries

Suppose that Q is a smoothly bounded, n-connected domain in C and b2 denotes
the boundary of Q.

We shall let LZ(bS2) denote the space of square integrable complex valued func-
tions on b with the inner poduct given by < u,v >= fbﬂ u¥ds where ds denotes
the arc length measure.

The Hardy space of functions in L?(bS)) that are the L? boundary values of
holomorphic functions on 2 shall be written HZ(b2).

The orthogonal projection S : L2(bQ2) — H2(bQ2) called the Szeg projection is
well-defined and represented by the Szegd kernel Sq(z,w) on 2 x Q via

Se(z) = /b Salz wlp(w) ds

for ¢ in L2(bS2) and z in Q. Here we have identified S € H2(b$2) with its unique
holomorphic extension to 2. The Szegd kernel is holomorphic in 2, anti-holomorphic

in w, and Sq(z,w) = Sa(w, 2).
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Let {v;}7-, denote the n non-intersecting boundary curves of 2. Without loss of
generality, assume that -y, is the outer boundary curve which bounds the unbounded
component of the complement of Q in C. Let {w;}7_; denote the harmonic mea-
sure functions associated to 2. They are harmonic functions on {2 which extend C*
smoothly to 0 and w;(v;) = &;; (see [10; p.38]). We can get a multi-valued holo-
morphic function W; by analytically continuing around {2 a germ of w; + 1w} where
wj is a local harmonic conjugate for w;. Then W} = 20w;/9z is also a holomorphic
function. The Szeg6 kernel and the Bergman kernel are related via

n—1 :
Kao(z,w) = 4nSa(z,w)* + Z AiWi(2) (2)
i=1

where );’s are constants in z which depend on w (see [6; p.119]).

Let a € Q be given. The function ¢,(z) = Sa(z, a)/La(z, a) maps Q onto the unit
disc and is n-to-one map (counting multiplicities) where Sq(z, a) denotes the Szegd
kernel and Lq(z,a) denotes the Garabedian kernel (see [10; p.390]). Among all
holomorphic functions h that map Q into the unit disc, the functions that maximize
the quantity |h/(a)| are given by e??g,(z) for some real constant §. Furthermore,
go is uniquely characterized as the solution to this extremal problem such that
g..(a) > 0. Also, g, extends to be in C®(Q), g, is nonvanishing on the boundary,
and g, maps each boundary curve one-to-one onto the boundary of the unit disc .

The n zeroes of g, are given by the simple pole of Lg(z,a) at a and n — 1 zeroes
of Sq(z,a) at aj,as,...,an—1 in 2 — {a} ( counted with multiplicities).

of Q onto the unit disc. It is an n-to-C*(Q), Garabedian kernel Lqg(z,a) via

Bell [4; p.105] proved that if a is close to one of the boundary curves, the zeroes
ai,az,...,a,_1 become distinct simple zeroes. If a is a point in the boundary of
Q, Sa(z,a) is nonvanishing on § as a function of z and has exactly n — 1 zeroes on

the boundary of €2, one on each boundary component not containing a.

3. Results

First we mention the following transformation formula (3) in [9] which is the
result similar to the formula (1).
For a proper anti-holomorphic correspondence f between two bounded domains



104 MOONJA JEONG

21 and €2, in C, there are subvarieties V; and V, of Q; and Qf where Q% = {w|w €
(2} and positive integers p and g satisfying the following conditions:

(i) Near a point z € Q; — V4, there are p anti-holomorphic mappings fi, fa, - , fo
which are defined locally near z and represent f.

(ii) Near a point w € Q2 — V5", there are q local inverses Fy, Fa, - - , F; to f which
are defined locally near w.

Then the Bergman kernels transform via

3" Ko, (55(2),w) () = 3 Ko, (Fiaw), 2) 2 ) (3
=1

=1

for z € Q) and w € Q2 where Kq, denotes the Bergman kernel function associated
to Q, fori=1,2.

Let © be a smoothly bounded, n-connected domain in C. The multi-valued map
a +— a,0as,...,08n_1 is a proper anti-holomorphic self-correspondence of 2 where
a1,02,...,0n—1 are the n — 1 zeroes of Sp(z,a). From now on, let f denote this
multi-valued map. There exists a subvariety Vi of Q such that { fi}?____ll denote
the mappings that locally define f and f;(a) = a; for a € © — V3. The inverse
correspondence f~! is equal to f.

Let {w;}7_; denote the harmonic measure functions associated with ) such that
w;(7:) = 0;; where bQ = U7;7;. Thenwehave0 < w; <1inQforeachj=1,...,n
and Z;.l:le = 1 on Q (see [10; p.38]). the Szegd kernel. By the properties of
harmonic measures, Zle’#j w; =1~—48p ony foreach k=1,2,...,n.

On the other hand, Bell [4; p.105] proved that if a is a point in the boundary of
Q, Sa(z,a) is nonvanishing on (2 as a function of z and has exactly n — 1 zeroes on
the boundary of 2, one on each boundary component not containing a. Therefore
Z::ll wj o f; is a harmonic function which equals to 1 — d;; on 7 for each k =
1,2,...,n. Hence,

n—1 n
E wjofi = E ws
=1

i=1,i%j

on Q for each j = 1,...,n by the maximum principle (see [12; p.271]).

We summarize this result in the following proposition.

Proposition 1. For a smoothly bounded, n-connected domain Q in C, the harmonic
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measures {w;}7_; satisfy that

n-1 n
E wjo fi = E w;
=1

i=1,i#j
foreachj=1,...,n.

We express the coefficients A;’s in Bergman’s formula, (2) explicitly in Proposition
2 by using the zeroes of the Szegé kernel and it helps to understand c;’s in Theorem
3.

Proposition 2. For a smoothly bounded, n-connected domain €1 in C, the Bergman
kernel and the Szegd kernel are related via

n—1 n-1

Ko(z,a) = 4nSa(z,0)? + Y _{> Ko(ax,a)Hi; }Wj(2)
j=1 k=1

for z,a € Q where [Hy;] denotes the inverse matriz of [W;(ax)].

Proof. Let Lq(z,a) denote the Garabedian kernel. Without loss of generality, we
assume that for a € Q, the zeroes a; of the Szegd kernel Sn(z,a) are distinct. Since
span{Wj : j = 1,...,n — 1} = span{Lq(,,a;)Sa(a) : ¢ = 1,...,n — 1}, there
exists a non-singular matrix [m;;] such that Wj(z) = ?:_11 mjiLa(z, a;)Sa(z,a)
(see [11]).

On the other hand, let G;(2) = Lq(z,ai)Sa(z,a) for i = 1,...,n — 1. Since
Lq(z,a;) has a simple pole at z = a; with residue 1/27 and Sq(as, a) = 0 for each 4,
Gi(ak) = 6ixSq(ai, a)/2m. Hence [Wj(ak)] = [m;i][Gi(ax)] is a non-singular matrix.
Therefore the equality Kq(ax,a) = Z?;ll Aj(a)W/(ax) got from (2) implies that
A; is represented by \j(a) = 2;11 Kq(ax,a)Hy; where [Hy;| denotes the inverse
matrix of [W](ax)]. O

The following theorem is the one which relates the Szeg6 kernel and holomorphic
maps W}(z) obtained from the harmonic measures on 2.

Theorem 3. For a smoothly bounded, n-connected domain ) in C, the Szegd kernel
satisfies the following identity

n—1 2afz n-—1 zafi n—1 .,
D Salfi(2),w)?52(2) = 3 Sa(fi(w),2)* 5= (w) + Y ¢;(w)W(2)
i=1 =1 j=1
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for z,w € Q with coefficients c;’s depending on w.

Proof. By (2), the Szegd kernel and the Bergman kernel are related via

Ko(z,w) = 4nSq(z,w)? + i A (w)Wi(2).

=1

By the transformation formula (3) for the Bergman kernel,

Z%ﬁmw mem )2 )
for z,w € Q.
The above two equations yield that
) fz n—1n—1 / afz
4«2&1(1& (2),w)* 52 (@) + D Y X(w)Wi(fi(2) 52(2)
=1 j=1
) f" n—1n-—1 8fz
= 4an Z Sa(fi(w), 2’5 () + 3> X5 (fw)Wj(2) 5= (w)
i=1 j=1

by the conjugate symmetric properties of the Bergman kernel and the Szegd kernel.
On the other hand, > 7", B(wj o f;)/0% = —0w; /DZ by Proposition 1. It implies
that

O fe ofi

ZW'(fz ) 5e ()~Z2J<fz 55 )

= Z 20(wj o f:)(2)/0z
i=1

— 90w, (2)/67
= -W/(2)

since w; is real-valued. Hence,

; Sa(fi(e) w) L (2) = ; St 9 e w) + ; I

where c;(w) = 2{\;(w) + Y1, L, (fz('w)) Lw)} O

As an application, we show that for a doubly connected domain, the coefficient
c¢1(w) in Theorem 3 is zero.
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Corollary 4. For a smoothly bounded, doubly connected domain Q in C, c1(w) in
Theorem 8 is zero for each w € ).

Proof. Since Q is doubly connected, for fixed w € 2 S(z,w) has only one zero w;.
Hence f = f; is bi-anti-holomorphic map of Q2 onto 2. By the method similar to
the transformation formula for the Szeg6 kernel under biholomorphic map (see [4;
p.46]), we get

Salf1(2), )y A2(2) = Sali(w), )y T2 (w)

for z,w € €.
On the other hand, by Theorem 3

Sa(fi(2),0) 22 (2) = Sal (), 2 T2 () + s (@F(E)

for z,w € Q. It also holds for z € . Hence ¢;(w)WI(z) = 0. By taking its conjugate
and integrating it with respect to z, &1 (w) 9w1ds — 0. Since 9 g5 £ 0 (see

M on 7 on
[10;p.40]), c1(w) =0 foreach w € 2. O

Remark. For a doubly connected domain, the formula in Theorem 3 is reduced to
the transformation formula for the Szegé kernel under a bi-anti-holomorphic map.
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