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ASYMPTOTICS FOR SOLUTIONS OF THE
GINZBURG-LANDAU EQUATIONS WITH
DIRICHLET BOUNDARY CONDITIONS

JONGMIN HAN

ABSTRACT. In this paper we study some asymptotics for solutions
of the Ginzburg-Landau equations with Dirichlet boundary con-
ditions. We consider the solutions (ue, A¢) which minimize the
Ginzburg-Landau energy functional E¢(u,A). We show that the
solutions (ue, Ae) converge to some (u«,As) in various norms as
the coupling parameter ¢ — 0.

1. Introduction

Let © be a smooth bounded simply connected domain in R2. We
consider two smooth functions

U : N —-C and A4: Q- R

satisfying |up| = 1 on 99, divAg = 0 and deg(g, Q) = 0 where g =
uo|an- Here deg(g, 002) is the winding number of g considered as a map
from 89 into S*. Consider the following Ginzburg-Landau equations
with Dirichlet boundary conditions, denoted by (P),

(1) Dlu+ 6i2(1 —uPu=0 inQ
(2) curl?A + %(EDAu —uDgu)=0 inQ
(3) u=g,A:A0 on o)

where € > 0, (Dg); = 8; — iA; and curl’4 = ~AA + V(divA). Here
u : 2 — C is the complex order parameter and A : @ — R? is the
magnetic vector potential.
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The Ginzburg-Landau model has been proposed in 1950 to give
phenomenological descriptions on superconductivity at low tempera-
ture. Physically |u| represents the density of the superconducting elec-
tron pairs, so called Cooper pairs, in the superconducting material.
When |u| = 0, the material remains in normal conducting state. When
|u] = 1, the material remains in superconducting state.

For physical reasoning, it is natural that the Ginzburg-Landau equa-
tions be solved under a Neumann boundary condition (See {4]). But
one can consider boundary value problems with the boundary data
simply imposed on the gauge potential itself. In other words we can
consider directly the influence of the external gauge potential instead
of the external magnetic field to the superconductor. Such a problem
has arisen in [7] and some existence results have been established. In
this paper we shall consider the Ginzburg-Landau equations constraint
to Dirichlet boundary condition.

The Ginzburg-Landau equations are the Euler-Lagrange equations
of the following energy functional

_ 1 2 2 1 2\2
(4) Be(u, A) = §/Q|DAu| IFAP + 5 (1= )

Here Fy = 81 A2 — 82 A; is the magnetic field. The functional E.(u, A)
has an important property; it is gauge invariant. This means that

(u, A) — (ue™X, A+ V).

for any smooth functions x : & — R. In Neumann boundary value
problem, it is possible to fix the gauge as divA = 0 (see [4]). In
that context, we shall consider the problem (P) under the condition
divA = 0.

For simplicity of analysis one may consider the case that the gauge
field vanishes identically, i.e., A = 0. In this simpler form the equations
(P) are reduced to

{ Au+L(1-|u)u=0 in Q

5
) u=g on 012,

and the functional E.(u, A) is reduced to

- 1 1
Bulu 4) = 5 [ [Val + 5501~ P,
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The equation (5) has many interesting properties and has been widely
studied in recent years (See [6]). One of remarkable results was ob-
tained by Bethuel, Brezis and Hélein [1,2], a very detailed asymptotic
characterization in the limit ¢ — 0 for the solutions to (5) minimizing
E.(u,A). The Brouwer degree d =deg(g, 0) plays a crucial role in the
asymptotic analysis for the solutions u, corresponding to (5)..

When d = 0, u. converges to a harmonic map which minimizes

/ IV’
Q

over the space Hy () = {u € WH3(Q,5%) : u = gon 8Q}. When
d # 0, the analysis is more complicated because H,(2) = 0. If Qis a
starshaped region u. converges the canonical map u, defined as follows;
there are exactly d points ay,--- ,aq such that

u. : AN\ {a1,--- ,aq} — S*

is a harmonic map. The location of a1,--- ,aq can be shown to be the
set which minimizes the renormalized energy (See [2] for the definition
of the renormalized energy).

In this paper we are concerned with the solutions (u., A¢) of (P)
which minimize the functional E.(u,A) in an appropriate function
space and consider a generalization of the works [1], the case d = 0,
when the gauge field is nontrivial. In section 2 we state our main
results; (ue, Ac) converges to some (u., A) in various norms. The ex-
istence and uniqueness of (u., A«) is proved. In section 3 we show that
it converges in C1(Q). In section 4 we show convergences in higher
derivatives and compute convergence speeds.

REMARK. After finishing his work, the author found out that the
asymptotic analysis of solutions was established in more general case
degg # 0 with Neumann type boundary conditions by F. Bethuel and
T. Riviére [3].
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2. Statements of the main Theorem

We define function spaces by

H = {ueWb?(Q,C) : u|oa = g},
V={AcW"2(Q,R?) : Alpq = Ag, divA = 0},

Ho = W33(Q,C), Vo= {Ae W} *Q,R?):divA = 0},
X=HxV, Xo=Hyx V.

In what follows we shall often write W*P() instead of W*P(£2,C)
or W*P(Q, R?) if there is no risk of confusion. We observe that for

B e W,
IBIZ, = / VB = / |Fal2.
(91 Q

DEFINITION 1. We say that (u, A) is a weak solution to (P) if v =
u—1ug € Hy and B = A — Ag € Vj satisfy

- 1
/QDAOJrB(uo +v)Dayg+BW + 6—2(|u0 +v2 = 1)(up +v)W =0
/ FAO—}—BFK et Im((uo + U)DA0+B(U0 + ’U)) -K=0
Q

for all (w, K) € Xo.

THEOREM 2. There exists a minimizer (u., A¢) of E. over X which
is a weak solution to (P) in X. Moreover, this solution is smooth up
to boundary.

Proof. Existence of a weak solution was shown in [7]. We rewrite
(1) and (2) as

6) Au = %A - Vu+ |APu - ;15(1 ~ JufP)u

(7) AA = %(UD au —uDau)

Since W12(Q,C) ¢ LP(Q,C) and W12(Q,R?) c LP(Q2,R?) for all
p > 1, standard elliptic arguments show that u and A are smooth. [l
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Let Hy = {u € H : |u| = 1}. Since deg(g, Q) = 0, H; is nonempty.
We consider the minimization problem of the following functional

J(u):/QIVuP.

over the space Hj. It is well known (see [1]) that J has a minimizer in
H; which is the unique smooth solution of

Au+ulVu?=0 inQ
(8) lu| =1 in Q

u=g on .

Next we consider the minimization problem of the following functional
1
Iw,4) = 5 [ [Daul® + PP
Q

over the space X1 = H; x V.

THEOREM 3. The variational equations of the functional I(u, A) are
given by
(9) Au+ulVu?=0 inQ

(10) curl A + %(EDAU. —uDsu)=0 inQ
u=g, A= Ag on .

These equations admit a unique smooth solution (u., A.) which mini-
mizes I(u, A) over X, and u. is the unique solution of (8).

Proof. Let (u,A) be a critical point of the functional I over Xj.
For given v € Hy and B € V, if we let w(t) = (u + tv)/|u + tv|,
then for all sufficiently small |¢|, w(t) € H; so that w(0) = u and
w’(0) = (v — u?v)/2. Differentiating |u|? = 1, we obtain

uVu+uVu =0
(11) 2 _
2|Vul* + uAu + ulAw = 0.
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Let a(t) = I(w(t), A+ ¢B). Then
20/(0) = / Re[V(v — u0)V @ + iaV (v — u3) - A+ (v — T20)Vu - 4
f2iUVu .B)+2A- B+ 2F4Fg
= / Re[-AG(v — u?3) + 2iVu - A(T — 7))
f 2B - [Re(iaVu) + A — AA]

- / %v(—AE+ wWAu — 2 Vu - A — 2iVT - A)
Q

+ %6(——Au + w2 AT + 20u’VT - A + 2iVu - A)
+ 2B - [Re(tuVu) + A — AA]
=0.
Hence the Euler-Lagrange equations are
—Au + u?AuU+ 2ulVE- A+ 2iVu- A=0.
{ —AA+ A+ Re(iwVu) = 0.

By means of (11) and the fact that |u] = 1, these equations are equiva-
lent to (9) and (10). Since (9) is equal to (8), (9) has a unique solution.
Since (10) is linear in A, it has a unique solution.

Next we show the existence of minimizer of I(u, A) over X; following
(7). Let (un,An) be a minimizing sequence of I over X, and let us
write u, = ug + v, and A, = Ag + B, for (v,, By) € Xo. Then

1
2U(un, 4) 2 [ 1Fay+ Fo 2 5 [ 1Fa, P~ [ Fasl
Q Q Q

Thus “Bn”%/‘) < 4I(un, An) + 2||Aol|% . Since |ug +vn| =1,
21(un, An)

> /Q 1D g 8, (0 + va) 2
= / |Vug + anl2 + 2Re[i(To + Tn)V(up + vn) -'(Ao + B)]
Q
+ |A0 + Bn]2|uo + Un|2

1
z/ —|an|2—C/ Vaol? + |Bal? + [Ao2.
o4 Q
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Hence (v, By) is uniformly bounded in Xy so that passing to a subse-
quence, if necessary, we see that there is (v4, B,) € Xp

{ (vn, Bn) = (v, Byx) weakly in Xg
(vn, Bn) — (v«, By) strongly in LP for all 1 < p < oo.
Let (u«, Ax) = (ug + vi, Ag + Bx). On the other hand, we observe that

2 (un, An) = / (IVonl? + |F.[2) + Awn, Bu),
Q
where
A(v,B) = / |Vug|? + 2Vug - Vo
Q

+ 2Re[i(Tp + 7)V(ug + v) - (Ao + B)]
+ |Ao + B[*up + v|2 + |Fa,|* + 2F4, - Fp.

Since A(vn, Bn) — A(vs, By), from the weakly lower semicontinuity of
norms

2Muny An) > [ (17002 4 |F.[?) + Awn, Ba) = 21(on, Bo),
Q
which implies that (u., A.) is a minimizer of I over X;. O

We are now in a position to state our main results. We establish

THOEREM 4. Let (ue, Ac) be any solutions of (1) and (2) which are
minimizers of E(u, A) over the space X. Then we have

(i) _
ue — u, in CH*(Q,C)
and _
A — A, in CH*(Q,R?)
forall0 < a < 1.
(ii) We have
“’l.L6 - u*“Loo(Q) S 062 and ”AE - A*”LOO(Q) S 063/2.
(iif) We have
llue — uxllcr (@) < Ce? and |Ac— Adller @) < Cé?
for every nonnegative integer k.
Proof. Theorems 11, 12 and 14. O

We will prove this Theorem in the next two sections following [1].



1026 Jongmin Han

3. Convergence in C1:%(f)

From now on let us denote by (ue, Ac) the solutions to (P) which
are minimizers of F.(u, A) over the space X.

PROPOSITION 5. (ue, Ac) — (ux, A) strongly in X.
Proof. Let ve = ue — ug and B, = A, — Ap. Since (u., 4,) € X,

1
(12) lDAeue|2+IF’fxel%r@(l—lueP)2 S/Q|I)/4"lt*|2+|FA.|2 = Ch.

As in the proof of Theorem 3, we have

1
C.> [1Fa+Fal 25 [ 1Fal = [ 1Fal
Q Q Q

1 1 1
S 21—z > — a_ 1ol
C*_~/§22€2(1 Jue|*)” > 462/Q|ue| 262|Q|

Thus (B,) is uniformly bounded in Vj and (u.) is uniformly bounded
in L*(£2, C). On the other hand,

and

C,> /QIDAOJFBE(UO +ve)[?

= / |Vug + Vv€|2 + 2Re[tT V(ug + ve) - (Ao + Be))
Q
+ Ao + Bel?|uc)?
1
> / ~|Vo|? — C/ [Vauo|? + [ue|* + |Aol* + | Be|*.
o4 Q
Hence (v) is uniformly bounded in Ho. Now there exists a subsequence
(Ue,,, Ae, ) = (ve, + ug, Be,, + Ao) and (@, A) € X so that

{ (te,, Ac,) — (@, A) weakly in X
(te,,, Ae,,) — (@, A) strongly in LP for all 1 < p < oo.

Since

/ (1 - fue,[2)? < 26,2
Q
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we get || = 1 and hence (@, 4) € X;. We also find as in the proof of
Theorem 3 that

/Q|Dfi’&|2 + |F/i|2 <.,

which implies that (i, A) is a minimizer of I over X;. By the uniqueness
of minimizer we have (@, A) = (ux, A.).
We observe by (12) that
/ |DA€nu€n — DA*u*|2 + |FAen — FA.:|2
Q

= / D e, |2+ |Dawal® + [Fa,_ 2+ |Fa.
Q

— 2Re(DAenu5n . _DA*U:*) - 2FA€nFA*

(13)

< 2/ IDA‘U*|2 + |FA.|2 - Re(DAenuen - Da,uy) — FAenFAt'
Q

Since (u,, , A, ) converges weakly to (u., A.) in X, the right hand side
of (13) goes to zero. Thus (u.,,, A, ) converges strongly to (u., A.) in
X. The convergence of whole sequence follows from the uniqueness of

(ux, Ay). O

LEMMA 6. (i) u ] <1in Q.
(ii) (Ae) is uniformly bounded in W22(Q, R?) .
(iil) [|Vuell Lo () < Co/e , Co is independent of e.
(iv) |ue} — 1 uniformly on Q.

Proof. (i) If we let we = (1 — |ue|?)/€2, then using (1) we find that
(14) € Aw, = —2|D g, ue? + 2Juc>we < 2Juc|we.
Then the maximum principle implies that w, > 0.

(ii) Since AA, € L2() by (7) and (12), standard elliptic estimates

give

| Acliwe(@) < CO@(I A2y + 1A Al (@) + | Aollwa:2(0))
< C(Q, C*a ”A0|IW2'2(Q))
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(iii) Let
Ve = Ue — (e,

where g, is a solution

Ag.=01in
ge = g on Of2.

Then by (6) v, satisfies

1
Ave = 2iA. - Vue + |Ac*u, — (- lue|?)ue = he in Q
ve = 0 on 9.

Since |uc| < 1 and (A) is uniformly bounded in L°°(£2, R?) by Sobolev
imbedding, we observe that

Vel Loy < lletell ooy + 1gell Loo ) < C

and

1 1
el < € (Ve + 5 ) < € (I90limie + 5 ).

It follows from (i), (ii) and Lemma A.2 that

1 1 C

[Voe]|f 00y < C (”VUe”Lw(Q) + 6—2) < SIVelfoo(y + 2
and thus c
IV Zo () < a

This achieves the desired estimate
Vel Lo (@) £ Vel L) + Vel Lo (@) < Clle.

(iv) We first show that |u¢| — 1 uniformly on every compact subset
of Q. Let K CC 2. Assume the contrary. Then there would be a
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sequence €, — 0 and z, € K so that 1 — |u,, (2,)|? > o for some fixed
a > 0. Since (ue,, Ae,) — (us, Ay) in X, by (12)

1
32 Q(1 — |ue,|?)* — 0.

Let 6, = ae,/4Cy < dist(K, 052) for all sufficiently small €,,. Here Cy
is the constant in (iii). If |z — zn| < n, then by (iii)

C a
| e, (2)[% = [ue, (zn)? | < 26,2 = =
€n 2
Now
1 / 22 < 1 2\2
00— — 1—|u > — 1 — |ue,
a0z [ 0
1 a2 9
> a = .62
4
> ot
~ 64Cg

a contradiction.

Since 2 is smooth, there is a constant C' depending only on §2 such
that

|Q N B(z,d)| > C&*
for all z € Q and for all sufficiently small § > 0. Using this fact, we

can show that for any z € 9Q, |u.| — 1 uniformly on QN B(z,?) for
some ¢ > 0 as above, and the proof is completed. a

In the rest of this paper we assume by Lemma 6 that |uc| > 1/2.
LEMMA 7. Let f2 = Zj,kl(ue)mjxkp. Then

(15) F2<A(Vu) + C(L+ VAP + [Vuel!) in @

where C is independent of €.
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Proof. For simplicity, we drop the subscript €. By direct calculation,
A(|Vul?) = 2f% + 2Re[t,, Aug, ).

Let A= (Al,Az). By (6)

T, Ay, = T, [2A - Vu + | AP -613(1 uPyula,
= 2iug ;(VA; - VT) + 26A;(Vug, - V)
+ 2uA;(VA; - Va) + |A[|Vuf?

+ S(VuPll +4?Va- V) - (1 - [uf?)|Vul
Hence by (1)

A(|Vul?) = 22 + 2Re(2iu,, (VA; - Va)
+ 21A; (Vumj -Vu) + 2uA;(VA; - Vu))

1 2D2
+2|AP|Vuf? + S[avVu +uval + —J‘-’fwulz.

Since 1/2 < |u| < 1 and A € L*°(Q,R?) by Sobolev embedding theo-
rem, we have

2f% < ~2Re[2ius,(VA; - V) + 2i4;(Vug, - VT) + 2ud;(VA; - V)]

2| D2l

Sl

< A(IVuP) + C(IVA||Vul? + flA| [Vu| + [u] |A] [VA|[Vul)
+C(A]|Vu| + |A]? Ju| + |Au]) |[Vul?

< 24+ A(Vul) + C(A + VA2 + |Vulh) .

+ A(|Vul?) + |Vul?

This gives the desired inequality. O
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PROPOSITION 8. u, is uniformly bounded in W22(Q2, C).

loc

Proof. Given § > 0, there is a number R > 0 so that

é
B(=,R)NQ 4

for each = € Q. Since ue — u, in H, for all sufficiently small €
(16) / Va2 < / 2 Vual? + 2/Vue — Va2 < 8
B(z,R)NQ B(z,R)NQ

for each z € Q. Let K cC Q. Fix a point £ € K and choose r <
min{R, dist(K,0€)}. Let ¢ be a smooth function with support in
B(z,r) satisfying 0 < { <1 and ¢ =1 on B(z,r/2). Furthermore, we
may assume that for each h € L(Q)

| [mwer] | [ mao] < o [n

Multiplying (15) by ¢2, we obtain
[ <o (i+ [ vupac+ [ 9are+ [ vule)
Q Q Q Q
an <01+ [ AVuleact [ATuler+ [ [Vudi?)
Q Q Q
go,(1+/ |vu€|4¢2).
Q

Since W11(Q) is embedded in L?(2), we see that for each h € W11(Q)

(/th)l/z < C/Q|h|+|Vh|.

Let h = |Vu|?¢. Then

[ vudic < o[ 19uf+ vuve + vudsic)

(18
' < cr(1+/QIVu€|fec)2.
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Consequently, by (16), (17), (18) and Holder inequality we obtain
/ff(Q < Cr<1+6/ £2¢2).
Q Q

Therefore if ¢ is sufficiently small, we conclude that

/ ﬁs/ﬁ@sa.
B(xo ,7‘,’2)

Hence u. is uniformly bounded in W22(Q, C). O

loc
LEMMA 9. For alle > 0,
Oue |2
/39 ov
Here C is independent of € and v is the outward unit normal vector
field on 0N}.

Proof. Let U = (Uy, Us) be a smooth vector field on Q2 so that U = v
on 0€). We note that by the uniform boundedness of ue in H,

2Re/QAu€(U-Vﬁ€)=2/ Oue 2 /U V(IVeuel?) + O(1)

_ 2/ |3“f / Va2 + O(1).
o0
On the other hand, by (6), (12) and the fact that |u| = 1 on 9Q

<C.

2Re / Au (U - V)
Q
— 2Re / %ide - V(U - Vo) + |AdlPuc (U - V)
Q

=L = U - VA

62
= 0(1) - ;'15/9(1 — ) (V. - U + 2V, - U)
—0(1) + 212/U V(1 - fuf?)?

=0(1) - 212 /(1 — |ue|?)2divU

= 0(1).
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/ 2l8uc

If we set 7 = v = (—up, 1), the tangent vector to 89, then |Vu|? =
|9e|2 4 |32 on HN. Since ue = g on 02, we conclude that

/m|3“‘ _/m'ag’ +0(1) = O(1). .

PROPOSITION 10. u, is uniformly bounded in W%2(Q, C).

Hence

— |[Vu? = 0(2).

Proof. In view of Proposition 8, it is enough to compute uniform
estimates of u, in W22 (€2, C) near the boundary of Q.

Let o € 092. From the smoothness of 01, changing coordinates
if necessary, we can find a smooth function A : R — R with h(0) =
zo such that for some r > 0, Q@ N B(wxg,7) = {x € B(xo,7)|z2 >
h(z1)}. Furthermore, there is 7/ > 0 so that the image of U = {y €
B(0,7")|y2 > 0} lies in QN B(zg,r) diffeomorphically under the corre-
spondence (z1,z2) > (21,72 — h(z1)) = (y1,42) € U.

Let Ge(y1,2) = ue(y1,¥2 + h(y1)) and Ac(y1,92) = Ac(y1,92 +
h(y1)). It is easy to check that if (u., A.) is a weak solution of (P),
then (., /L) is a weak solution of

(19)La6 = 2ib- Vi, + |A e — (1 - |@[?)E in U
LAc = (@D i — Dy i) in U
(i, Ac) = (@, Ao) on {zo =0}NaU,
where
L=Y,,% By; (away ), aii=1, a2 =an =—-h, agg=1+h"?,
b= (b1,b2), by=A1 by=Ay—h4A,
D; = V —iA,,

V= (0y,05), V= By, (1= 1)dy).

Let f2 = 32k 1(@e) ;4. |*. We want to get an inequality of type (15) for

f2. Since the right hand side of (19-2) belongs to W 2(U R?), by ellip-
tic estimates we have || A2, 2(u,r2) < C and hence ”AEHLOO(U Rr2y <
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C. For simplicity we drop the subscript ¢ and write u instead of @ and
so on. By direct calculations, we see that

(20) L(,VUP) = 205Uy, y, Uy, y, + 2Re[Ty, - L(uy, )].
Differentiating the first equation of (19), we find that
(21)

2Re(ty, L(uy,)]

. — n 1
= 2Re[~y, ((@ij)y. y, )y, + Uy, (260 Vu + AP — 6_2(1 ~ [ul*)u Jui]
= —2Refty, ((ai;)y.uy, )y;] + 2Re[20(b;)y, uy, Uy, + 205Uy, Ty, ]
1
+ 2|A]2|Vul? + 4Re[ud;V A; - V] + SluVu+ uVa|?
+ %(Lu — 2ib - Vu — | A]?u)|Vul?.
Since ||A[| e (0) < C and |Lu] < C(f + [Vul), by (20) and (21)

L([Vul?) > 26f% — C|Vul(|Vu| + f) — C(IV|[Vul* + £1b|Vul)
— Clul|AlIVAl|Vu| — C(b]|Vul + |A]P|u] + |Lul)| Vul?
> 0f% -~ C(1+ VA2 + |Vul?).

Here 8 is the ellipticity constant of L. Thus
i< C(L(|Vu|2) +1+|VAPR+ |Vu|4).

Choosing a test function ¢ with support in B(0,r’) satisfying 0 < { <1
and ¢ = 1 on B(0,7'/2), we are led to

/ e < 0(1 + / |vu(4g2+L(|vu|2)c2).
U U
If the last term of the righthand side is uniformly bounded, then

/Uf2C2 < C/Ul+ |Vu|4¢2.
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Using the same arguments used in the proof of Proposition 8, we con-

clude that
/F&sa
U

which proves the proposition.
It remains to show that

(22) / L(|Vul?)¢? < C.
U
First, we observe by integration by parts that
/ L(Vul?)c? = / Vul?Le? + 2 / a12| V()
U U {y2=0}
s @iVl [ anlTuP(ed),
{y=2=0} {y2=0}
- [ an((TuP)c
{y2=0}

Invoking Proposition 5 and Lemma 9, we see that all the integrals on
RHS are uniformly bounded except for the last term. On the other
hand, it follows from integration by parts that

| an(vaP)c
{y2=0}
= 2Re/ a22ﬁyxuy1y2<2 + a221—1’92uy2yzc2
{y2=0}
=2Re[ —/ (a22C2)y1§yl’u,y2 —/ a22§y1y1uy2cz
{y2=0} {y2=0}

+ / 22Uy, Uy, y, C2 ] .
{y=2=0}

The first two terms are uniformly bounded by Lemma 9. To estimate
the last term, we note that on {y2 = 0}, by (19)

a22Uy,y, = — (@11Uy, )y, — (A21Uy, )y,

— (a12uy, )y, — (a22)y, Uy, + 2ib- Vu + 1Al
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Now using Lemma 9 and integrating by parts, we find that

= 2
Re / 22Uy, Uysy, C
{y2=0}

= Re /{ 0 ‘“(allgyl)muyzgz - (aZluyz)ylﬁyzcz - (a12uy1)y2ﬂyzc2
y2=
- (a22)y2 |“y2 |2C2 + 2i(b- VU)ﬂyzCz + |Alzu—ﬂy2cz

= 0(1) ~Re /{ }(a21uy2)ylﬂyzcz + (al?uyl)yzayzcz
y2=0

= O(1) ~ 2Re / 19Uy, 3 Ty €2
{y2=0}

—o+ [ (@ lu,l’
{y2=0}
= 0(1).
Thus (22) is proved. O

THEOREM 11. Let (u., A.) be any solutions of (1) and (2) which
are minimizers of E¢(u, A) over the space X. Then we have

ue — us in CH*(Q,C)

and _
A.— A, in CH(Q,R?)
forall0<a<1.

Proof. We note that by Proposition 10, (Vu,) is uniformly bounded
in LP(Q, C?) for all p > 2 and so is (AA.) in LP(2,R?) by (7). This
verifies the assertion for A.. Let

1
We = 6_2(1 - |“6|2)-

Then, since |u.| > 1/2, (14) reads

(23) —2Aw, + we < 2|DAeu6|2.
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Multiplying (23) by wP~! and using Hélder inequality, we find that

[ wr <2 [ wrtiDaul < Coldizie

Consequently, by (6) we conclude that (u¢) is uniformly bounded in
W2P(Q, C) for all p > 2, which completes the proof. a

4. Convergences in higher derivatives

Since g : 02 — Sl.is of degree 0, there is a smooth function ¢q :
0f) — R so that g = €*¥°. We also denote by ¢g its harmonic extension
in Q. It is easily seen (BBH1) that u, = e*¥°.

THEOREM 12. We have
(1) llwe — uxllLoo(ay < C€?,
(ii) ”A6 - A*”Loo(Q) < 063/2.

Proof. We investigate that by the maximum principle (see Theorem
3.7 [5]), (23) yields
lwellLee < C.

Hence if we let u, = pe*f with p. = |u.| (this is well defined because
lue| > 3 ), then

(24) 11— pellLeo(ay < C€2.
Take the imaginary part of (6) to obtain
(25) Pl +2Vp. - V. =24, - Vpe.

Multiplying pe on both sides of (25) and using the fact that Apg =0
and divA, = 0, we find that

(26) { —A(pe — o) = div((p? — 1)(Vpe — A)) in Q
we —po =0 on o).
Now elliptic estimates (see Chapter 8 [5]) applied to (26) yield

lloe = wollzeo(a) < Cl(P? — 1)(Vpe — Al Lo(e)

(27)
< C”p? - 1”Loo(Q) < 062.



1038 Jongmin Han

Hence
ue — ua| < |(pe — 1)€e| + |€*% — e*%9|
< pe — 1] + lpe — 0| < Cé?,

and (i) is proved.
To prove (ii) we now apply Lemma A.2 to (6) and (9) to obtain

IVtte — Vuu||foo (0 < Cllue — tall oo () < C€.

Since . .
Vue — Vu, = €% (Vpe + ip. Vo) — 1€*¥° Vg,

we have
(28)
IVPel < |V'U'€ - Vu*l + |(p€ - 1)V‘Pe| + |‘Pe - ‘POl |V‘Pe| + |V<Pe—V900|

< Ce+ Ce + |V — Vipg|.
Next, we rewrite (25) as
(29) A(pe — o) = —EVpe - Vipe + —Z—Ae - Vpe.
Pe Pe
Since e — o = 0 on 0, by Lemma A.2, (27) and (28) we have
IVee = Veoolli @) < ClVoell Lo (@yllee — wollLo(e)
< Ce¥(Ce+ ||[Vipe — Vol peo(ay)-
Thus we obtain
(30) IVpe = Vipol|poe(ay < Ce¥2.
On the other hand, equations (7) and (10) read
{ AA. = p?A. + Re(iT. Vu,)
AA. = A« + Re(i@.Vu,).

Since by (24) and (30)
IRe(iTe Vue) — Re(iT, Vu)| < (07 — 1)Ve| + |Vpe — Vipo| < Ce®/?,
it follows from Lemma A.3 that

| Ae — A*||L°°(Q) < Ce¥2, g

(31)
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LEMMA 13. We have
(1) IVeeller ) < C,
(i) |1 Acllcr @) < C,

]- - pe
(iii) H =

C;COC(Q) -

Proof. We use inductions on k. The case k = 0 follows from Theo-
rem 11 and (24). We take real and imaginary parts of (6) and (7) to
obtain

1
(32)  Ape=pelVeel® — 2peAe - Voo + |Acpe — 5 (1= pl)pe

2 2
(33) Ap. = ——Vpe -V + p—Ae - Vpe

€

(34) AAe = pgAe - pngDG.

It comes from (32) that (Ap) is uniformly bounded in C’l’j)c(Q) and
hence
”,05 llwlitzm(g) < Cp Vp < o0

and
(35) IVoellcr (o) < C.
Similar arguments applied to (33) deduce
||(p6”Wl’Z‘Z2'p(Q) <Cp and ”Aeuwl';tzrp(n) <Cp Vp<oo.
Therefore
(36) 1Acloe o = €
Now (A,) is uniformly bounded in W'lﬁjl”’ (Q2) so that
lpellyyxso.r(q) < Cp VP < 00
In particular,

(37) Ve ”Czkotl () <C.
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For the proof of (iii) let we = (1 — pe)/€2 and Q" cc @ cC Q be
given. We rewrite (32) as

(38) —Aw, = pE|v‘Pe|2 —2pcAc- Ve + ]A6|2Pe = pe(1+ pe)we = fe.
We take 8% on both sides and use Lemma A.1 to get
185 wel|Z ooy < CllE*wel| ooy (A8 we || ooy + 105 well Loo(sr))-
By induction assumptions (i) - (iii), we have

105 wel| ooy < C
and

1 C
1A% we|| Lo () = ||€—23kfe||Loo(nf) <z

Thus we conclude that
(39) [|ew€||C{cot1(Q) <C.
We rewrite (38) as
(40)
—€E AW + 2We = pe|Vpe|> — 2peAc - Vipe + | Ac | pe + 36?w? — etw? = he.
Then (36), (37) and (39) give

||€we||ck+1(ﬁ) < Co

”henckﬂ(ﬁ‘r) < 007
where Cy = Co(€?'). Differentiating (40) (k + 1)-times, we find that

—2 AT, + 20w, = 81k,
Let @ = 81w, — Cy. Then we have
—€AD+2H <0 on &
w < @ on V.
2¢

Applying Lemma A.4 we conclude that

Co _
105 we| oo (@) < Co + 2—36 d/4c
where d = dist(©2”, 0Q’). Consequently
Hwencfotl(g) <C,

and the proof is completed. O
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THEOREM 14. We have
(1) llue —usllcx (o) < C€,
(i) 1A = Adller (@) S C€.

Proof. We claim that
(41) lpe = wollcx (@) < C€.

We use inductions on k. The case k = 0 follows from (27). From (29),
(35), Lemma 13 and Lemma A.1, we find that

llpe — ‘POHZCL’CO*ZI(Q)
< Clige — poller (o)

x (Ikpe = pollag @y + I = (Vo - Vo) /pe + (Ac - Voo foellcy ()
< Ceét.

It follows from Lemma 13 and (41) that

e =l (o < l(pe — D)e
On the other hand (41) says that

|Re(ite Vue) — Re(it: Vi) cx ()

< N1(02 = DVeellcr @ + IVpe = Veollor (o) < Ce*.
Now Lemma A.3 applied to (31) verifies (ii). O

o .
ck @)+ lle? —e?cx (o) < Ce.

APPENDIX. In this section we state and prove several lemmas used
essentially in the proofs in the context. The proofs of lemma A.1 and
A.2 can be found in [1]. Throughout this section {2 denotes a smooth
bounded domain in RY.

LEMMA A.1. Suppose that
—Au=f inQ.
Then for each K CC 2
IVullZeo 5y < Cie(1fll oo Il ooy + N1ullf oo s2))
where Cx depends only on N and K.
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LEMMA A.2. Suppose that
—Au=f Iin Q.
u=0 on J0
Then
VUl ooy < CllF llzoo oy llell Lo ey
where C depends only on N and ().
LEMMA A.3. Let
Aue + cue = fo in Q
Aug+cug=f in Q
u.—ug=0 on 9.
Suppose that for some C independent of €
llce — cllLoo(n) < Ce
| fe = fllLeo(y < Ce.
Then
lue = uo|lL=(n) < Ce.
Proof. We see that
Aue — up) + ce(ue — up) = —(ce — )uo + (fe — f).
By elliptic estimates
llue — uollLeo(e) < C(ll(ce — uolleo(q) + [ fe = fllLo(m)) < Ce. U
LeEMMA A.4. Let u(r) be the solution of
—€?Au+2u=0 inB(0,R)
u=1 ondB(0,R)
Then for € < 2R, we have
u(r) < emr(” =R op B(0,R).
Proof. A direct computation shows that emr(P—F) ig 5 supersolu-
tion. il
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