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INTEGRAL ESTIMATES
OF MAGNETOHYDRODYNAMICS EQUATIONS

SANGJEONG KIM

ABSTRACT. In this paper, we show that the weak solutions of the
time-dependent Magnetohydrodynamics equations in 3 dimensional
periodic domain belong to L%(O,T; V;) following the method of
Foias-Guillopé-Temam for Navier-Stokes equations.

1. Introduction

In this paper, we consider the following magnetohydrodynamics
(MHD) equations in the non-dimensional form,

8 1 1, B
(1.1) pre +(u-V)u— E«;Au+ SV(EB )—S(B-V)B=f{,
(1.2) QB+( V)B —(B-V) +—l—- 1 (curlB) =0
. v u u+ p—curl (curlB) =0,
(1.3) divu = divB = 0.

Here we denote u = (ui(z,t),us(z,t), us(z,t)) as the velocity of the
particle of fluid, B = (B(z,t), Bs(z,t), Bs(z,t)) as the magnetic field,
f = f(z,t) as the volume density force at (z,t). The constants Re, Rm
and M are the Reynolds number, the magnetic 2Reynolds number and

the Hartan number respectively. Define S =

The equations are important ones in the ﬁeld of plasma physics. The
existence of weak and strong solutions and some regularities are estab-
lished by M. Sermange and R. Temam [3]. More precisely, they proved
the weak solution of MHD equations belongs to L*(0,7; V) where V is
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divergence-free subspece of H!. Now we are interested in this weak so-
lution. We prove that the weak solution belongs to L#-1 (0,T;V,(Q)) in
3 dimensional periodic domain for » > 1. We will follow the method of
Foias-Guillopé-Temam for Navier-Stokes equations [1].

The organization of this paper is the following: In section 2, we in-
troduce function spaces that are used in this paper. In section 3, we
recall known results about existence, uniqueness and regularity of weak
solutions. In section 4, we prove the main theorem, namely we show that
if f € L®(0,T;V,_,), then the weak solution belongs to Lz1(0,T;V,)
for r > 1. As a corollary, we prove that the weak solution belongs to
LY0,T; L=(Q)) if f € L*(0,T; H) following the idea of L. Tartar [1].

2. Function spaces

We supplement the system (1.1) ~ (1.3) with following initial and
boundary conditions

(2.1) u(z, 0) = ug(z), B(z,0) = By(z) for all z € R3,

(2.2) - u(z + Le;, t) = u(z,t), B(z + Le;, t) = B(z,t),

for all z € R% and ¢t > 0. Here L is the period and {e;}3_; an orthonormal
basis of the space. But we will regard L to be 27 for notational simplicity.
Let T > 0 and let X be a Banach space. We shall consider L*(0, T; X),
1 < p < o0, which is the space of functions from [0,T] into X, which are
L? for the Lebesgue measure dt. This is a Banach space for the norm

0<t<T

1
T P
( / [|u(t)||’)’(dt) for I<p<oo, oUW yt)lix for p=oo.
0

We denote LQ(Q) as the space of R-valued functions on @ which are
square integrable for the Lebesgue measure dz = dx; dz, dx;. This is a
Hilbert space for the scalar product

(u,v) = /Qu(a:) -v(z) dx.

We use the same notation also for V5(Q), the space of R3-valued functions
which are square integrable on Q.
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Using Fourier series expressions, V5(Q) is identified with the space of
functions u satisfying

(2.3) u——Zu er*, w;(t) € C? u; =1, fortel0,T).
jeZ3
For m € N, we also introduce
Vn(Q) = {u € %(Q)I(2m)* Y 15" |wsl* < o0, 1o = 0}
jez?
with inner product
(u,v)gm = / Z DFy - DRy dx = (27) Z 17)%™ wj - v_j.
Ik[~m A

We will use (-,-)g= also in scalar case if it does not make confusion. Let
V_m(Q) be the dual space of V,,(Q). Especially,

V ={ueVi(Q)|j u; =0 for all j € Z%},

H={ueVy(Q)|j u; =0 for all j € Z%}
and V'’ is the dual space of V. We equip V' with the scalar product

((9) = Y 5) = S Y1315

which is also scalar product on V;(Q).
V and H are defined as followings:

V={(u,B)|u,BeV}, H={(y,B)ly,BeH}
We equip H with the following scalar products
(®,9) = (u,v) + (B,C) forall® = (u,B), ¥=(v,C) € H
with associated norm, |®| = {(®, ®)}2. We also equip V with the scalar

products
(2, %)) = ((u,v)) + ((B,C))

with associated norm, ||®] = {((®, ®))}>
We define an operator A € L(V,V’) so that

(Au,v) = ((u,v)) for all u,v € V.
Then we recall that A is unbounded operator on H, whose domain is
DA ={ueV,Auc H} = H*NV.
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Since we consider divergence free functions on periodic domain, A is
actually —A.

Now we define a trilinear form on L!(Q) x W11(Q) x L!(Q) by setting

0

3
b(u,v,w) = Z /Qui Dyv; w; dz (where D; = 8—$),

3,j=1
whenever the integrals make sense. We know the trilinear form b is

continuous on (H'(Q))? [4]. Thus it is natural to define a continuous
bilinear operator B from V x V into V' so that

(B(u,v), w) = b(u, v, w).
3. Known results
Let T > 0 be given and let us assume that (p,u, B) is a smooth

solution of (1.1) ~ (2.2).
We multiply (1.1) by a test function v € V' and integrate over Q. Then

31 Z(uv) + - ((v,0)) + b(u, u, v) — SH(B, B,v) = (£,v).

ot Re
We multiply (1.2) by a test function C € V and integrate over Q. Then
0 1
(3.2) —a—t(B, C)+ —R—;n—((B, C)) + b(u, B,C) — b(B,u,C) = 0.

This suggests the following weak formulation of the problem (1.1) ~
(2.2).

DEFINITION 3.1 (Weak solution). Let N = 2 or 3, f € L*(0,T;V")
and ¥y = (ug, By) given in H. Then & = (u, B) is called weak solution
of MHD equations if it satisfies

® e L*(0,T; V)N L®(0, T; H)), $(0) = &,
(3.1) and (3.2) for all ¥ = (v,C) € V.

DEFINITION 3.2 (Strong solution). Let N = 2 or 3, f € L%(0,T; H)
and ®y = (ug, By) given in V. Then ® = (u, B) is called strong solution
of MHD equations if it satisfies

u, B € L*(0,T; D(A)) N L=(0,T;V),
(3.1) and (3.2) for all ¥ = (v,C) € V.
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By using operators A and B, equations (3.1), (3.2) are written as

(3.3) g‘t‘ = Au+B(u,u) - SB(B, B) = f,
(3.4) %—f + —AB + B(u, B) — B(B,u) = 0.

For these equations, M. Sermange and R. Temam established follow-
ing results about existence and uniqueness [3].

THEOREM 3.3. For f,wu, By given with

(3.5) feL*0,T; V"), & = (u, Bo) € H,

there exists a weak solution ® = (u, B) of MHD equations satisfying
(3.6) ® € L*(0,T; V) N L™(0, T; H).

Furthermore,

1. if N = 2, ® is unique and satisfies

(3.7) d' e L*0,T;V), ® € ([0, T); H),
2. if N=3, there is at most one weak solution of MHD equations
satisfying
(3.8) ® e LY0,T;V).

THEOREM 3.4. Let f,uq, By be given with
feL®0,T;H), & = (ug,By) €V,
1. if N=2, the strong solution ® = (u, B) of MHD equations satisfies
(3.9) ® € L*(0,T; D(A)) N L*(0, T; V),
2. if N=3, there exists T, > 0 (depending on Q, f, ||®||) and on [0, T,],
there exists a unique strong solution ® of MHD equations which
satisfies (3.9) with T replaced by T..

4. Integral estimate

In this section we will prove the following theorem:
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THEOREM 4.1. (N=3, space periodic) We assume that ®, € H, f €
L>(0,T;Vin-1) and that ® is a weak solution of the MHD equations.
Then P satisfies

T
(4.1) / |D(t)|y; 2"‘dt <e <o
0

forr =1,--- ,m+ 1, where the constant ¢, = ¢,(g, 72{;, Q, &y, ).

To prove the theorem, we need some lemmas. From now on, we set
N=3.

LEMMA 4.2. Letu,v € H*'andw € H. 1<k <r,and1<lm <
7 — 1. Then the following inequalities hold.

L1
(4.2) / u D™y D"w dz| < c1|u|}{,2'|u|§,+1|v|Hr+1|w|Hr,
Q
(4.3) / Dty D%y D'y dz
Q
< oolulln Flul i E ol ol wlar,
4.4 2 D" 2d < 2_71- % % 2—%
(4.4) u” ( v)* dz _63IU|H, |u|H,+1|'U|H1|v|H,H,
Q
@5) | [ u D D'u D™ da| < calul’n ¥ |ul ool o/
. o 4% g Hr+l
w D"™™y D'u D"y de
2_2I+2m 1 20+2m-1 20+2m+1 92_ 21+2m+1
< C5|’U.|H1 lulﬂr?l |v|H1 |v|Hr+l )

where ¢, ¢q, C3, €4, C5 are constants independent of u, v, w.

Proof. By Gagliardo-Nirenberg inequality,

11
< |ulpeo|v] grt|wlgr < Clu'}p%|U|}}r+1ller+lller.

/ v D" D™w dz
Q
By Sobolev imbedding, H* — L8(Q), Hz(Q) — L¥(Q),

‘/ D*y D%y D"w dz| < |DFu|ps|D"**10|1s| D w2
Q

IN

L Y ] P A
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Thus by interpolation inequalities, we infer that

/ Dfy D" %y D™w dz

< el F X ol ol ol

Inequalities (4.4) ~ (4.6) come from interpolation inequality and the
following inequalities:

/u2 (D™v)? dz
Q

/ u D™v D'u D™y dz
Q

< cluffx vl

S c|u|Loo|v|Hr|Dlu|L4|Dr_lvlL4,

< CIDm’U,|L4|Dr_m’U|L4lDl’U,|L4iDT_lUlL4.

/ D™y D™y D'u D""'v dz
Q

O
LEMMA 4.3. If ® is a smooth solution of MHD equations, then for
eacht>0andr > 1
d R
(4.7) Z12@Er + SO < L (1+[8(¢ nl2(0)5),

where R = mln(Re, Rm) L, = L.(Re,Rm,Q, N._1(f)) and N,_1(f) =
|flee(o,rv,_,). Moreover, we have

d R
(4.8) 2@ + F12O - < L1+ @) )"
where L = L/ (Re, Rm, Q, N,_1(f)).
Proof. We take the scalar product of H in (3.3) and (3.4) with A™u
and A" B respectively. Then we obtain that

(4.9)
1d 1
2 dtl IH' elulﬁ'{’*l = (f> u)H' - (B(u’ u),.A'u) + S(B(B7B)7'Aru)’

(10) dtlBlH, lm{Bﬁ,r-l:(B(B,u),ATB)—(B(u,B),A’B).

The first term in the right-hand side of (4.9) is majorized by

(4.11) |F ) a2 [w(®)| 1 < EIU(t)

Hr+1 +R{Nr l(f }
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Then by (4.2) and (4.3), other terms in right-hand side of (4.9) and
L L
(4.10) are governed by |<I>[}pz’ |<I>|;;f§ |®|gr. Thus we obtain that

g+ L
9gt Re'*H

R ]. 1-4 1+4L
(412) < Jluf + S {Na(DY + IRl 125 Bl
R 1 4r
< el + AN (NY + T1Bs + Rl
(@13) S SABl Bl < S0 + hl2lolE.
By adding (4.12) and (4 13),
1d
—|®[% + Rl¢’|m+1 < c7|<I>|H1]<I>|}},‘ +{Nei (N}

24t
Thus we obtain (4.7). By interpolation inequality,

4(r-1

4r-1)

o < 1+c®(t)| 5 i O(t)|
< 14 €|®(t) | Hr + Ce|D(2) |57

for all € > 0. This yields to (4.8). O

1+ |®(t) |5 2 (2) |5

An immediate consequence of (4.8) is that ® remains in V; as long as
|®|| remains bounded.

LEMMA 44. If &y € V,, f € L®(0,T;V,-1) and r > 1, then the
strong solution & of MHD equations given by Theorem 3.4 belongs to
C(0,T.;V;). If &y € V, f € L*(0,T;V,_1) and r > 1, then & €
C((0,T.]; V7).

Proof. We first consider the case ®, € V,, and we first show that ®
belongs to L*(0,T,;V;). For that it suffices to prove that the Galerkin
approximation u,, of u remains bounded in L*(0,T; V;) as m — oo.

(4.14)
0 0) o An(t) + Pl (1), (1)) — SPnB(Bo(t), Bult)) = Puf,
(4.15)
dB,, 1
7 —2(t) + B ——ABp,,(t) + PrB(Br(t), um(t)) — PaB(un(t), Bu(t)) = 0,
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(4.16) um(0) = Pn(ug), Bn(0) = Py(By).

We take the scalar product in H of (4.14) with A"u,, = (—1)"A™u,,, and
of (4.15) with A"B,, = (—1)"A"B,,. Since P, is self-adjoint in H and
P, A"u,, = A"u,,, we get
1 2
§Elum|m + ‘R5;|um|brM

= (f, um)HT - (_l)rb(um7 Um, ATum) + S(_l)rb(Bm> Bma Arum);

1
B T _Bm2r+1
2dt’ |H Rm[ H

= (=1)"5(Bum, i, A" Bpa) — (—1)"b(tmy BrnA” Br).

This is similar to (4.9) and (4.10). Thus, exactly as in Lemma 4.3, we
get the analogue of (4.8),

d R

Since ®,, € I™(0,T,; V), for 0 <t < T,

l¢>m(t) i < AT+ 1 2m(0) 3,

2 S L1+ [,

| Pn®o|ar < |<I>0| B 1mphes that ®,, remains bounded in L*(0,T;;V;)
and L?( 0,T,; Vy11).

Since |u|gi, |B|g: are uniformly bounded for 0 < S T., B(u,u),
B(u, B), B(B,u) and B(B, B) are in L*(0,T,; V,_) b emma 4.2. Fur-
thermore, f € L*(0,7,;V,_;) and Au, AB € L*0,T, V 1). Thus it
follows that & € L%(0,T.;V;_1). Therefore & € C([0,T.};V;) [5] (Chap
I11. §1.4).

For &, € V, we observe that the strong solution of MHD equa’clons
belongs to L2(0 T.;D(A)). Thus &(t) € D(A) = V;, almost every-
where on (0,7,), and we can find ¢, that is arbitrarily small so that
®(t,) € Vo. The first part of the proof shows that ® € C([t;,Ti]; Vo) N
L*(t1,T.; V3). Hence ®(ty) € V; for some t, € [t),T.] arbitrarily close
to ty, and € C([tg,T] V3) N L%(ty, T.; V). By induction we arrive at
® € C([t,-1, T.); Vi) N L3(t,_1, Ty; Vyi1). Since t,_; is arbitrarily close to
0, the lemma is proved. 0
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Let m > 1. We say that a solution ® of MHD equations is V,,-regular

on (t1,t2) (0 < ¢ < ty) if @ € C((t1,t2); Vin(Q)). We say that V-
regularity interval (¢;,t;) is maximal if there does not exist an interval
of V,,-regularity greater than (t1,t,).
The local existence of an interval of V,,,-regular solution is given by above
lemma : if & € V,, and f € L*®(0,T; V,,-1), then there exists an V,,-
regular solution of the MHD equations defined on some interval (0, ).
Also, it follows easily by above lemma that if (¢, t2) is a maximal interval
of V,,-regularity of a solution ®, then

(4.17) lim sup |u(¢)|y,, = 0.

t—ty—0

Now we prove the main theorem.

Proof of the theorem Let (o, ;) be maximal interval of V,,-
regularity of ® for ¢ € N. On each interval (o, 5;), the inequality (4.7)
is satisfied for r = 1,.-- ,m. We write them in the slightly weaker form

d R 2r
(418)  —Zfof, + SIeM)l,, < L1+ 20,1+ LOALES
Then we deduce
31 +]2F,)
(L+ @))%
By integration in ¢ from ¢; to G;, we get
2r—1 N 2r—1
(1+12(6: - OR)=  (L+]@(s +0)})7
Bi d(1)|? Bi
PN gy < / (1+[@()f)dt.
a (1+]2() %/,)2’“ o

From (4.17), the first term in the left-hand side of the inequality vanishes
along a sequence converging to [3;, since (a;, §;) is a maximal interval of
Vin-regularity. Thus

Bi lq)(t) %,rﬂ .]'_-/1 Bi )
e ST

By summation of these relations fori € N, we find, since ® € L2(0,T; V),

< L1+ 2(1)]5,)-

T (¢t 2
(4.19) / | ()}"gl —dt<c forr=1,---,m.
o (L+[@()[)7
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The proof of (4.1) is now made by induction. The result is true
for r = 1. We assume that it is true for 1,---,r, and prove it for
r+ 1 (r <m). We have

[ i
- /oT [(1 +|T<I(>()1;)T%:1)2311 ] [(1 + |q’(t)l%)2‘35‘1} s

[/OT (1 JT;ZI)??V) = dt] : UOT“ - |q’(t)|2v,)§r’ﬁdt] =

Therefore (4.1) holds for r + 1 due to (4.19) and the induction
assumption.
Now we obtain the following corollary using Tartar’s idea [1].

COROLLARY 4.5. We assume N = 3, periodic. We assume &, € H
and f € L*(0,T; H). Then any weak solution ® of MHD equations
belongs to L'(0,T; L*(Q)).

Proof. By Gagliardo-Nirenberg inequality

[u(t)|z=() < cllu|?]Au(t)]2,
1 1
[B(t)|=@) < cl|B||2|AB(t)]|2.
Thus we obtain that
|B(t) |10y < ¢[1B]|7| 4D

By Hoélder’s inequality it follows that

/|<1> |Lm(g)<c</ AD(t |dt) (/ 1(t ||2dt).

Thus the right-hand side is finite thanks to (4.1). O
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