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INNOVATION OF SOME RANDOM FIELDS

S1 S1

ABSTRACT. We apply the generalization of Lévy’s infinitesimal equa-
tion
85X (1) = ¢(X(s),s < t,Y;,t,dt), t € R,

for a random field X (C) indexed by a contour C or by a more general
set. Assume that the X(C) is homogeneous in z, say of degree n,
then we can appeal to the classical theory of variational calculus and
to the modern theory of white noise analysis in order to discuss the
innovation for the X (C.)

1. Introduction

As is well known, P. Lévy has proposed the so-called stochastic infin-
itesimal equation,

(1.1) 5X(t) = p(X(s), s < t,Y,, 1, dt),

from which the structure of a stochastic process can be determined.
Although it has only formal significance, it has profound suggestion in
the investigation of a stochastic process X(t),t € R. In the expression
(1.1) the Y; is the innovation for X (t); namely {Y;} is an independent
system such that each Y; contains the same information as that is gained
by the X (t) during the time interval [t,t + dt).

We are interested in a random field X (C) indexed by a manifold C
and wish to discuss its intricate probabilistic structure by observing the
variations 0X(C) when C varies a little within a certain class C. To
this end we generalize the above method of the innovation approach to
X (t) with one dimensional parameter to a random field X(C) with a
parameter C.
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The basic idea of our investigation of a random field X(C) is to in-
troduce the stochastic infinitesimal equation for the field in order to
characterize the X(C). Our approach is of course in line with white
noise analysis. We form the innovation process for the given field and
express it as a functional of the obtained innovation.

T. Hida has proposed a counter part of (1.1) for a random field X (C)
depending on a contour (or a loop) C' in the form

(1.2) §X(C) =¥ (X(C"),C’' <C,Y(s),s € C,C,5C),

where C' < C means that C’' is inside of C, that is, the domain (C")
enclosed by a contour C’ is a subset of (C), and where @ is, as before, a
nonrandom function and the system Y = {Y(s), s € C; C} is the inno-
vation. We note that the parameter set C = {C} is taken to be a class
in which the variation can make enough contribution to our approach,
and it will be specified later.

The first step to our problem is to establish a way of constructing an
innovation and then we come to a problem to form the given field as a
functional of the constructed innovation.

The discussion will be first done , particularly, on the innovation
which is taken to be a (Gaussian) white noise, then come to a slight
generalization. In any case such an innovation may be called a system
of idealized elementary random variables (see [3]), because the system of
those random variables is most elementary and atomic.

Important concept and tools from analysis are applied for our pur-
pose; namely generalized white noise functionals which are like infinite
dimensional Schwartz’s distributions and the differential operator that
will be prescribed later.

We have so far discussed only some particular cases, however it is our
hope that the present technique can be applied to more general class of
random fields formed from white noise.

2. Background

We first prepare some background, the theory of white noise, along
which the innovation approach to random field is discussed.

Let (E*, i) be a white noise space, where E* is a space of generalized
functions on R? ; it is the dual space of some nuclear space E C L?(R?),
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and where p is a Gaussian measure on E* such that its characteristic
functional C(£), € € E, is given by

CE) = Ji expli < 2,6 >] dulz)
(2.) = exp [-3[El7), €€ E.

Then the complex Hilbert space (L?) = L?(E*, 1) can be build in a usual
manner. A member of (L?) is denoted by ¢(z), 1(x) and so forth.

We can now construct the Gel’fand triple
(2.2) (8) c (L) c(9),

where (S) and (9)* be the space of test functionals and that of general-
ized (white noise) functionals, respectively. For more details we refer to
1].

Since we will deal with some random fields with parameter which is
taken to be lower dimensional manifolds, we need the following assertion
to be proved.

PROPOSITION. Restrictions of the parameter of white noise to lower
dimensional C*—manifolds (or equivalently, definitions of marginal dis-
tributions of the white noise measure ) are defined in terms of general-
ized white noise functionals.

Outline of the proof. The integral, in the formula of the characteristic
functional C(¢), given by (2.1), can be restricted on a smooth manifold
M. Then a Gel'fand triple

(2.3) E(M) c L*(M) c E*(M)

is obtained and we are given a Gaussian measure puy on E*(M) is
uniquely determined by Cy(£). Note that the construction of the above
Gel’'fand triple heavily depends on the differential structure of the man-
ifold M. O

REMARK. The measure p)s is viewed as a marginal distribution of
p. It is easy to see that (S(M)) and (S(M))* can be defined as in the
case of (S) and (S)*. This fact is tacitly used in section 4, where M is
specified to be a contour C.
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The S-transform of a generalized functional ¢(z) € (S)* is defined by

(2. (5000 = [ (e +O)uta), e (s

By using this transform, we can define a differential operator J; acting
on (S),

6
2. =81 —
where =2~ denotes the Fréchet derivative.

dE(t)

REMARK. For the one dimensional parameter case, a concretized ex-
pression of white noise is B(t), the time derivative of a Brownian motion
B(t), and there p-almost all z € E* are viewed as sample paths of B(t).
We may also consider the operator §; as the partial differential operator
ﬁ?(—t)’ which can be defined rigorously.

The adjoint operator 0; for the operator J; is defined on (S)* such
that

(26) <at307 QL’) = <90’ ai*’lp)’ @ € (S)) 11[) € (S)*

For more details of the white noise analysis we refer to [1] and [4].
We note that the actions by the operators 9; and ;" can be restricted
to (S(M)) and (S(M))*, respectively, for any C*°-manifold M .

3. Innovations of Gaussian processes

We shall first deal with a visualized case in order to illustrate the
idea behind our approach to random fields. Let {X(¢)} be an ordinary
Gaussian process with one dimensional parameter t € T C R!. Assume,
in particular, that the X(¢) has a representation in terms of a white
noise B(t). More precisely, we assume that X (t) has unit multiplicity
(see [2]) and that it is expressed as a Wiener integral of the form

(3.1) X(t) = / tF(t,u)B(u)du, teT,

where the kernel F(t,u) is assumed to be smooth enough in both vari-
ables. Then, its variation over an infinitesimal time interval (¢, + dt) is
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given by
(3.2) OX(t) = F(t,t)B(t)dt + dt / t Fy(t,u) B(u)du + o(dt),
where Fy(t,u) = ZF(t,u).

As is well known, the representation of the form (3.1) is not unique
for a given X(¢). Let us take the canonical representation, which can
give some advantageous for our innovation approach. Thus it satisfies
the condition

(3.3) E(X(t)/Bs(X)) = [°F(t,u)B(u)du, forany s <t,

where B,(X) is the smallest c—field with respect to which all the X (u), u <
s, are measurable.

PROPOSITION. If a Gaussian process has a representation of the form
(3.1), the function F(t,t)? is uniquely determined regardless the repre-
sentation is canonical or not.

Outline of the proof. Take an interval I = [a,b] arbitrarily and let
{A;} be a partition of I. Consider E(3_,;(A;X)?) which will converge
to [; F(t,t)?dt as A = maz|A;| — 0 by the continuity of F(t,u). Since
I is arbitrary, the assertion is proved. O

We have a freedom to choose the sign of F(t,t), but we do not care
the sign, since B(t), which is to be associated to dt, has symmetric prob-
ability distribution. On the other hand F(t,t)? is determined by §X(t),

which means that the F(¢,t)? is independent of the way of representa-
tion.

If we assume
(3.4) 8X (t) is of order Vdt,

then F(t,t) may be taken to be positive and continuous. With this
assumption and noting that X (¢) has unit multiplicity, we know F(¢,t)
and can prove the following theorem.

THEOREM. The limit
dt—0+ F(t, t)
gives the innovation.
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NOTE. The innovation obtained above will be denoted by the same
symbol B(t)dt as was in (3.1). However, it may be different from the
original one, if the representation (3.1) is not a canonical representa-
tion. The system {B(t)dt} well defines a Brownian motion B(t) for the
canonical representation.

Once the B(t) is given for every ¢, we can define the differential operator

(3.6) b= -2 u<t

0B(u)
Apply 0, to X(¢t) to have F(t,u) : G, X(t) = F(t,u),u < ¢t It is
the canonical kernel that we are looking for. Noting that B(t) is the
innovation, we can establish the following proposition.

PROPOSITION. The exact value of the canonical kernel F(t,u) is ob-
tained by applying the operator 8,, u < t, to the X(t) .

Thus we can see that the expression (3.1) for the canonical represen-
tation can be completely determined and hence the structure of X(t)
can be known.

REMARK. As for the idea of the canonical representation of a Gauss-
ian process we refer to [2].

4. Random fields and their variations

Let X(C) be a random field with parameter C which is taken to be a
smooth manifold running through the parameter space of the white noise
z(u),u € R, z € E*. Here, E* is the space of generalized functions on R?
and the white noise measure p is introduced on E*. We are interested
in the variation 6X(C), of X(C), in which the innovation would be
obtained.

To fix the idea and to avoid non-essential complex assumptions, we
restrict our attention to the case where the parameter C is in C con-
taining smooth contours (i.e. loops) in the plane. As a similar formula
to the variation for a stochastic process X (t), we propose a stochastic
variation equation for X(C) as in (1.2).

The innovation is understood more precisely in the following sense.
The system {Y;, s € C} is independent of every X(C") with C' < C, and
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the equation (1.2) tells that the new information that the random field
gains between C and C + §C should be the same as that gained by Y,’s
when s runs through the same region between C and C + 6C.

It is claimed that the equation (1.2), if it exists, can determine the
probabilistic structure of the given random field X(C) completely, al-
though (1.2) has only a formal significance.

In what follows we assume that

(4.1) X(C) is causal in terms of white noise.

This means that X(C) is a function only of the z(u), v € (C), (C)
being the domain enclosed by C, = € E*. We are now ready to discuss
a random field X (C) satisfying the condition (4.1) and

(4.2) X(C) = X(C,z) is in (S)* and homogeneous in z.

Here homogeneity means that the S-transform U(C, £) is a homogeneous
polynomial in £ of degree n in the sense of P. Lévy. In addition we assume
that

(4.3) X(C,z) is a regular function of z.

PROPOSITION. Under these assumptions (4.1), (4.2) and (4.3) there
is a positive integer n such that X(C) can be expressed in the form

(44) X(C)= /(C)" F(Ciup,ug, ... up) : z(ug)z(ug) . .. x(uy) : du®,

where F(C,uy, us, ... u,) is symmetric in u;,us, ..., u, and where : : is
the Wick product. Chapter 4.

The formula (4.4) is simply denoted by

(4.5) / F(C;u) : 2"%(u) : du.
(C)n
Our final assumption is that the kernel
(46) F(Ciu) and F'y(Cyu;s) = P83 (5)

are continuous in u and in (u,s), respectively.
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DEFINITION. The representation (4.4) is a canonical representation if
(4.7) E(X(C)/X(C"),C" < Cy)
- /(C) F(Ciup,ug, -uy) : (wg). 2(tuy) : duy...dun,
-

for every C; < C.

The notation £ means the weak conditional expectation in the sense
of Doob. It means the projection of §X(C) on a closed linear manifold
spanned by X(C’), C' < C.

We can prove that the representation (4.4) is a canonical representa-
tion if and only if

(4.8) / F(C;uy,ug, ..up) f(uz, .., uy)du” = 0,
(i

for all (C) < (Cp) implies f =0 on (Cy).
Let us take the variation § X (C) of(4.4). Then it is of the form

§X(C) = n// F(C,uy;s) : 2™ V2(u))z(s) : dudn(s)ds
¢ Jey

(4.9) +// F'(C,u; s) : 2"®(u) : on(s)duds,

cJy
where u] = (us, us,- -+ ,u,) and F), denotes the functional derivative in
C.

Take the weak conditional expectation.
E(@BX(C)/X(C"),C < C)
(4.10) / /C)" F'o(C,u; 8) : 2°®(w) : on(s)duds.
Then we have
8X(C) - E(6X/X(C"),C' < C)
411) =n /C /(C)" F(Cuyys) s oV V2(ud)a(s) - dufdn(s)ds.
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Let dn vary in the class of C*°—functions so that 4C is taken outward
and that the integrand over C is determined as a function of s and the
R.H.S. will give

(4.12) z(s) /(C)"_l F(C,uy;8) : 2™ V2w )dud,.
Let us denote it by
(113) 2($)p(5)

and use the same technique as in one dimensional parameter space. Thus
we know the value

(4.14) O

We may ignore its sign to determine ¢(s) . Divide (4.13) by ¢(s) to ob-
tain the generalized innovation z(s). Since the representation is canon-
ical, it can be regarded as the same as the original z(s). It means that
it is the real innovation (not in a generalized sense). Thus we can prove
the following theorem.

THEOREM. The innovation for the random field X (C) given by (4.4)
is obtained as

1 Jax(C)-E(#X(C)/X(C),C < C)
(4.15) z(s) = 205) { y (s)}

Note that if the representation is canonical (4.15) gives the original z
n (4.4). However for the noncanonical case, we can see that

8X(C) — E(6X/X(C"),C" < C) #
(4.16) //)n_ (C, ;s s) : 2™ V®(uh ) (s) : dut)dn(s)ds

Thus in this case we are given a generalized innovation which is different
from the original z.

REMARK. Observe that the situation is somewhat different from the
one dimensional parameter case, i.e. Gaussian case. That is

(4.17) “6X(C) — E(6X(C)/X(C"),C' < C)

is orthogonal to X (C’) where C’' is inside of C, however may not be
independent.
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Let 0, be the differential operator defined as in (3.6), where B(u) is
replaced by z(u).

PROPOSITION. The kernel function F' in (4.4) is obtained by
1
(4.18) F(Ciuy,ug,y ... uy) = Hauﬁm...aunX(C),
in which uq, U9, ..., u, are different.

CONCLUDING REMARKS.
1. We hope to generalize this theorem to the case where X(C) is a
normal function of z (cf. L-functional in the sense of Saito [6]) to have
a similar result.
2. Details of the proofs and generalizations will be reported in a separate

paper.
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