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CONVERGENCE THEOREMS FOR
SET VALUED AND FUZZY VALUED
MARTINGALES AND SMARTINGALES

SHOUMEI L1 AND YUKIO OGURA

ABSTRACT. The purpose of this paper is to give convergence the-
orems both for closed convex set valued and relative fuzzy valued’
martingales, and sub- and super- martingales. These kinds of mar-
tingales, sub- and super-martingales are the extension of classical
real valued martingales, sub- and super-martingales. Here we com-
pare two kinds of convergences, in the Hausdorff metric and in the
Kuratowski-Mosco sense. We also introduce a new convergence for
the fuzzy valued case in the graph sense and obtain convergence
theorems.

1. Introduction

In practice, we are often faced with random experiments whose out-
comes are not numbers or vectors but are sets or are expressed in inexact
linguistic terms. The former case is set valued random variables (also
called random set). In the past 50 years, the study of set valued random
variables has been developed extensively, with many applications to eco-
nomics and optimal control problems, statistical problems and so on, see
for examples, Arrow and Debreu [1], Arstein and Vitale [2], Aumman
(3, 4], Debreu [8], Hiai and Umegaki [10, 11], Kendall [12], Klein and
Thompson [14}, Kudo [16], Papageorgiou [27-28], etc.. The concept of set
valued random variable has been formalized as an extension of random
variables and random vectors (cf. Matheron {23}, Molchanov {24]). The
latter case is fuzzy set random variables. As a simple example, consider
a group of individuals chosen at random who are questioned about the
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weather of tomorrow in a particular city on a particular day. Some pos-
sible answers would be ”a little raining day”, ”a heavy raining day”, ”an
extremely heavy raining day” and so on. Whether it will rain tomorrow
or not is a random phenomenon but each outcome is an inexact linguis-
tic terms. A possible way of handling these inexact linguistic terms is
by using the concepts of fuzzy sets (cf. Zadeh [34]). This kind of fuzzy
valued random variable was introduced by Puri and Ralescu in [29], and
was followed by many works such as strong law of large numbers and
central limit theorems (cf. [5, 6, 13, 30] etc.).

Concerning set valued martingales, Hiai and Umegaki [10] have given
the definitions and obtained convergence theorems. This theory is the
basic foundation of the study of set valued martingale theory and its
applications. Their results were used by many authors such as Ban [5, 6],
Luu [22], Papageorgiou [27, 28] etc. The well cultivated results in above
theory are, however, mainly on compact set valued random variables.
This comes from the fact that the most typical method in the theory of
set valued random variables is to embed the family of all of compact sets
into a Banach space by using H. Radstrém’s embedding theorem [31],
which is only available for the family of all of compact sets. For example,
Hiai and Umegaki only got the convergence theorem for the compact
set valued martingales by using embedding theorem. Although they
obtained a regularity theorem, they did not get the convergence theorem
for the closed set valued martingales. Since regular property does not
imply convergence in Hausdorff metric for the set valued martingales, we
can see that Hausdorff topology is a too strong topology for the study
of set valued random variables.

In 1991, Puri and Ralescu [30] built a concept of fuzzy valued martin-
gale and got a convergence theorem for fuzzy valued martingales. The
basic route of this kind of study is to exploit the theory of set valued ran-
dom variables, because fuzzy valued random variables are considered as
a family of set valued random variables satisfying some additional con-
ditions, and there are very rich mathematical properties in the theory of
set valued random variables as that is mentioned above. Most of impor-
tant results in this theory are, however, mainly on fuzzy valued random
variables on the case where the level sets are compact. They still used
the embedding method. We have to notice that many important results
in that theory, such as central limit theorems and convergence theorem
for fuzzy valued martingales, were obtained under Lipschitz condition,
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which is a very strong condition. For example, Lipschitz condition is
not satisfied even for simple fuzzy valued random variables. This extra
condition is only for keeping the embedding theorem to be available.

Here, we mainly develop the theory of closed convex set valued ran-
dom variables, get convergence theorems for the closed convex set valued
martingales and sub-, super-martingales, and then use them to study
fuzzy valued random variables whose level sets are not compact in the
underlying Banach space X.

For these purposes, we must first make up a theory on non-compact
set valued random variables F', and then apply them to that on fuzzy
valued ones. In more words, we firstly discuss the properties of Au-
mann integrals, conditional expectations for closed convex set valued
random variables and give some sufficient conditions for Aumann inte-
grals and relative conditional expectations to be closed, which are very
necessary results to discuss sub- and super-martingales. Secondly we
prove a representation theorem and then obtain convergence theorems
for closed convex set valued martingales, sub- and super-martingales in
the Kuratowski-Mosco sense under weaker conditions than that in for-
mer works. Then we find the relations between the theory of set valued
random variables and fuzzy valued random variables so that we can ex-
tend the results to fuzzy cases.

Since the embedding theorem can not be used for the closed set val-
ued random variables and relative fuzzy valued random variables, we
must find a new method to solve the problems above mentioned. The
main method here is the systematic use of the associated the set of
measurable selections Sr of closed set valued random variable F', which
lies in L[, X], the space of X-valued integrable random variable. This
makes the objects more tractable, since L![Q2, X] is already a Banach
space. To get convergence theorems for closed set valued martingales,
sub- and super-martingales, we exploit the martingale selections. For
the results of fuzzy valued random variables, we first use the cut sets
of the fuzzy valued random variables and get the system of set valued
random variables. Using the selection technique, we got relative results
on the system of cut sets and then bring them back to the fuzzy valued
cases. This is the first advantage.

Our second advantage is to make use of the Kuratowski-Mosco topol-
ogy in place of Hausdorff topology, which was a main tool in most of
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former works. There is a rich history of Kuratowski-Mosco topology af-
ter the celebrated paper [25] (see also (26], [32, 33] e.g.). Actually, Both
notions of convergence for set valued in a metric space, the Hausdorff
metric convergence and the Kuratowski-Mosco convergence, are emi-
nently useful in several areas of mathematics and applications such as
optization and control, stochastic and integral geometry, mathematical
economics. However, in an normed space, especially for infinite dimen-
sional cases, the Kuratowski-Mosco convergence is more tractable than
the Hausdorff one.

We should notice that Papageorgiou got the convergence theorems for
closed convex set valued martingales in Kuratowski-Mosco sense in his
papers. However the assumption there that the conjugate functions were
uniformly lower equi-continuous is not easy to check, especially when we
apply them to fuzzy valued martingales. In this paper, we succeed in
getting rid of this assumption by exploiting martingale selections. This
is our third advantage.

We obtain the convergence theorems for both closed convex set val-
ued sub- and super-martingales in Kuratowski-Mosco sense, since we
successfully give the sufficient conditions for the Aumann integral and
relative conditional expectation to be closed. Then we extend them to
the fuzzy case. There were not any results on this topic before.

Finally, we introduce a new convergence called convergence in graph
sense for fuzzy valued random variables and obtain convergence theo-
rems, since it makes the topology clearly for the space of fuzzy valued
random variables.

We organize this paper as follows: in section 2, we firstly give the
basic definitions and results for set valued random variables, and then
we state our main theorems for set valued martingales, sub- and su-
permartingales. In section 3, we discuss convergences for fuzzy valued
cases. In section 4, we introduce convergence in graph for fuzzy random
variables, give the equivalent definitions and then obtain some conver-
gence theorems for a sequence of fuzzy valued random variables and
martingales.

The proofs of theorems in sections 2 and 3 were given in our papers
[17] - [21]. The proofs of theorems in section 4 were given in our preprint
paper “Convergence in graph for fuzzy valued random variables and
martingales”.
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2. Convergence theorems for set valued martingales

Throughout this paper, (2,4, 1) is a complete, probability space.
Denote by (%, || - ||x) a real separable Banach space, and by K(X) the
family of all nonempty, closed subsets of X, by K (%) the family of all
closed, convex subsets of X, and K.(%X) the family of all compact, convex
subsets of X.

Define two operations in K(X) as follows:

(2.1) A+B=cl{a+bjac Abe B},

(2.2) AA = {Aag;a € A},
where A is a real number.

REMARK 2.1. We do not define the Minkowski addition at (2.1) in
the ordinary way, because {a + b;a € A,b € B} is not a closed set in
general, even if A and B are bounded closed sets (cf. Li and Ogura [17]).

The Hausdorff metric on K(X) is defined as follows:

(2.3) dp(A, B) = max{sup inf ||a — b|,sup inf |ja — b||x}
a€A beB beB acAd

for A,B € K(X). But if A or B are unbounded, dy(A, B) may be
infinite. It is well-known (cf. Kuratowski [16, p.214, p.407]) that the
family of all bounded elements in K(X) is a complete space with respect
to the Hausdorff metric dg, and the family of all bounded elements
in K. (X), K.(X) are closed subsets of this complete space. For A €
K(X), || A]lx denotes the norm of A defined as ||A|lx = sup||al|%-

acA

A set valued random variable F' : Q@ — K(X) is a measurable mapping,
that is, for every B € K(X), F*Y(B) :={w e %, Fw)NB # 0} € A
(cf. Hiai and Umegaki [10], for a few equivalent definitions).

A measurable mapping f : Q — X is called a measurable selection
of F if f(w) € F(w) for all w € Q. Denote by L'[Q, X] the Banach
space of all measurable mappings g : 2 — X such that the norm ||g||; =
Jo llg(w){|xdu is finite. For a measurable set valued random variable F,
define the set

Sp={fe L' %]: f(w) € F(w) a.e(n)}.

For a sub-o-field Ay, denote by Sr(Ap) the set of all Aj-measurable
mappings in Sp.
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A set random variable F' : Q — K(X) is called integrably bounded ift
the real valued random variable || F(w)||x is integrable. Let L'[Q, A, u;
K(X)] denote the space of all integrably bounded set random variables
where two set random variables Fy, F» € L[, A, u; K(X)] are considered
to be identical if Fi(w) = F>(w), a.e.{).

The following Theorem is about the relation between a set valued
random variable F' € L'[Q, A, p; K(X)] and Sp (cf. Hiai and Umegaki
[10)).

THEOREM 2.1. (1) Let F € L'[Q, A, u; K(X)], then

(a) Sr is a nonempty, closed and bounded subset in L![$, X],

(b) there exists a sequence {f,} contained in S such that F(w) =
c{fu(w)} for all w € Q,

(¢) S is convex if and only if F(w) is convex for almost every w € 2.

(2) Let M be a nonempty closed subset of L'[{);X]. Then there
exists a set random variable F € L'[Q, A, u; K(X)] such that M = Sp

if and only if M is nonempty, closed, bounded and decomposable, i.e.
h = 1I4f+ Io\ag belongs to M for all A€ A and f,g € M.

Define the subset of L[, A, u; K(X)] as follows:
LQ,A Bl ={F € L'|Q, A, 1, K(X)] : F(w) € B, ae.(1)},
and if Ay is a sub-o-field of A, we denote
LYQ, Ay, 11; B] = {F € L'[Q, A, i1; B] : F is Ay — measurable},
where B is a subset of K(X).

For each F' € L'[, A, u; K(X)], Aumann integral (cf. Aumann [4])
of F is

(2.4) /Qdez{/ﬂfd,u:feSp},

where [,, fdp is the usual Bochner integral. Define [, Fdu = {f, fdu :
fe€Sp}, forAe A

If F is a compact convex valued random variable, the Aumann integral
and Debreu integral are equivalent (cf. Klein and Thompson [15]).

Let Ay be a sub-o-field of A. The conditional expectation E[F|.Ay] of
an F € L[, A, u; K.(X)] is determined as a Aj-measurable element of
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L', A, p; Ko(X)] by
(2.5) Serian(Ao) = c{E(f|Ao) : f € Sr},

where the closure is taken in the L![Q, X] (cf.Hiai and Umegaki [10]). If
X* is separable, this is equivalent to the formula

(2.6) cl/quzcl/E[Fl.Ao]d,u for A€ As.
A y)

REMARK 2.2. The integral [, Fdu of F and the set {E(f|Aj) : f €
Sr} are not necessary closed in general (cf. counterexample in Li and
Ogura [21]).

In the following, we will give some sufficient conditions for the closed-
ness of Aumann integral of compact convex set value random vari-
able and of closed convex set valued random variable F, and the set
{E(f)Ao) : f € Sr} concerning the conditional expectations E[F|Ay] of
F (cf. Li and Ogura [21]). They are important for our proof of the set
valued submartingale convergence theorem.

A Banach space X is said to have the Radon-Nikodym property (RNP)
with respect to a finite measure space (2, A4, u) if for each y-continuous
¥-valued measure m : A — X of bounded variation, there exists an

integrable mapping f : @ — X such that m(A4) = [ fdu for all A € A.
A

It is known that every separable dual space and every reflexive space has
the RNP (cf. Chatterji [7]).

THEOREM 2.2. (1) If X has the RNP and F € L![Q, A, u; K.(%X)],

then the set
/Fd,u:{/fdp:fESF}
0 Q
is closed in X.

(2) If X has the RNP, F € L'[Q, A, u; K.(%X)] and Ay is countably
generated, that is Ay = o(21) for a countable sub-class 2 of A, then the
set

{E(flA): f € Sr}
is closed in L'[2, X].
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THEOREM 2.3. (1) If Xis a reflexive Banach space, F € L'|Q, A, i;
K (X)]. Then the set

/Fd/.LZ {/fd,u,:fESF}
Q 0
is closed.

(2) If % is a reflexive Banach space, F' € L'[Q, A, p; K.(%X)] and Ay =
o(2) is countably generated. Then the set
{E(f|4o) : f € Sr}
is closed in L'[?, X].

In the following we discuss set valued martingales and smartingales.
Let {A, : n € N} be a family of complete sub-o-fields of A such that

A, C A, if n €N, and A, the o-field generated by |J A,.
n=1

A system {F,, A, : n € N} is called a set valued martingale iff
(1) Fo € L'[Q, Ay, p: K(X)], neN,
(2) F, = E[Fp11]As], n €N, ae(p).

A sequence of set random variables {F,,n > 1} is called uniformly
integrable iff
lim sup / | Fr(w)|lxdpe = 0.

Atoo neN
{IIFa(e)llx>A}

By using embedding theorem, Hiai and Umegaki [10] obtained the
following results.

(1) Let {F,, A,;n > 1} be a compact convex valued martingale such
that F, = E[F|A,],n > 1, where F € L'[Q, A, ;K. (%)] (or F €
L'Q, A, ;K (X)] and X is reflexive). Then

dH(Fn)FOO) - 0)
where F,, = E[F| A
(2) Let {F,, A;;n < —1} be a set valued martingale such that F;, =

E[F|A,],n < —1, where F_; € L[, A, 11; K.o(X)|(orF_1 € L'[Q, A, p;
K.(X)] and X is reflexive). Then

dy(F,, Foo) = 0
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as n — —oo, where F_,, = E[F|A_], and L}[Q, A, y; K.(%X)] denotes
the closure of the set of all simple functions in L[, A, u; K (X)] (cf.
Hiai and Umegaki [10]).

REMARK 2.3. The assertions above are not valid for F € L![Q, A, u;
K (X)), in general.

A set valued martingale {F,, A,;n € N} is called regular if there
exists an F' € L'Q, A, u; K (X)] such that F, = E[F|A4,] for all n.

Now we give the representation theorem for closed convex set valued
martingales by exploiting the method of martingale selections (cf. Li
and Ogura [17]).

THEOREM 2.4. Assume that X has the RNP and {F,, A;;n > 1}
is a set valued martingale in L'[Q, A, u; K (X)]. If {F,} is uniformly
integrable, then there exists an Fy, € L'[Q, A, u; Kc(X)] such that

F, = E[F4|A;] ae.(u), neN.

REMARK 2.4. The X-valued martingales with regular property, as we
know, imply convergence in almost everywhere with respect to u. But
in the case of set valued martingales , regular property does not imply
convergence in the Hausdorff metric (cf. Li and Ogura[20, Example
4.2]). We can see from this fact that the Hausdorff topology is too
strong for the study of set valued random variables. Now we introduce
the Kuratowski-Mosco convergence.

Let {Bn}nen is a sequence of closed sets of X. We will say that
B, converges to B in the Kuratowski-Mosco sense [25, 32] (denoted by
B, X B)if

w-limsup B, = B = s-liminf B,,
n—00 n—00
where
w-limsup B, = {z = w-limz,, : 2, € B,,m € M C N}
and
s-liminf B, = {z = s-limz, : z, € B,,n € N}
n—00

In [20], we proved the following theorem by using martingale selection

method. Since the Kuratowski-Mosco convergence and the Hausdorff
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convergence are equivalent when X is a finite dimensional space, this
result also generalizes the result of Hiai and Umegaki above mentioned.

THEOREM 2.5. Assume that X is a Banach space satisfying the
RNP with the separable dual X*. Then, for every uniformly integrably
set valued martingale {F,, A, : n € N}, there exists a unique F, €
LY, A, u; K (X)) such that {F,, A, : n € NU oo} is a martingale and

K-M
F, — F, ae.(p).

A system {F;, A, : n € N} is called a set valued submartingale (cf. Li
and Ogura [21]) iff it satisfies the following two conditions
(1) for each n € N, F, € L'[Q, A, #; K.(%X)],

(2) for each n € N, Sk (A,) C {E[f|A.] : f € Sr,..(Ani1)}-

REMARK 2.5. 1) Condition (2) is equivalent to
(3) For eachn,m € Nwithn < m, Sg, (A,) C {E[f|A.] : f € Sk, (An)}-
2) Condition (2) is stronger than the notion of submartingale in [10],
where they use the condition

F,(w) C E[F, 1| A)(w), a.e(p),
that is,

(2') Sk, (An) C {E(flA) : f € Sp(Ans1)}-
3) Condition (2) is equivalent to formula (2') if

S ={E(flA) : f € Sk,.,(An11)}

is closed. Concerning its closedness, we have given the sufficient condi-
tions in Theorems 2.2 and 2.3.

Now we give a convergence theorem for a set valued submartingale as
follows.

THEOREM 2.6. Assume that X is a Banach space satisfying the RNP
with the separable dual X*. Then, for every uniformly integrably set
valued submartingale {F,, A, : n € N}, there exists a unique F,, €
LYQ, A, 1; K. (X)] such that F, =N F., a.e.(p).

To prove this theorem, we first get a selection representation lemma
for the closed convex set valued submartingale (cf. Li and Ogura [21],
Lemma 5.1).

A system {F,, A, : n € N} is called a set valued supermartingale iff
it satisfies the following two conditions
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(1) for each n € N, F,, € L'[Q, A, p; K (X)),
(2) for each n € N, E[F,,1|4,](w) C F,(w), a.e.(u).

REMARK 2.6. Condition (2) is equivalent to E[F,,|A4,](w) C F,(w),
a.e.(u) for each n,m € N with n < m.

The following is the convergence theorem for set valued super-martingales
in Kuratowski-Mosco sense.

THEOREM 2.7. Assume that X is a Banach space satisfying the RNP
with the separable dual X*, {F,, A, : n € N} is uniformly integrably set
valued supermartingale and

(25) M= ){f € L' A, 1 %] : B(f|As) € Sp,(Ax)}

n=1
is a nonempty set. Then there exists a unique Fy, € L}[Q, Ay, p; K (X)]
such that F, ™= F.., a.e.(n).

3. Convergence theorems for fuzzy valued martingales

Let F(X) denote the family of all fuzzy sets v : X — [0, 1] such that
its each a-cut set v, = {z € X : v(z) > a} is nonempty, closed subset
of X, for every 0 < a < 1 with vy = cl{z € X : v(z) > 0} is bounded
subset of X. For two fuzzy sets v!,1v? € F(X),v! < 2 iff v} C v2 for
every a € (0, 1]. Obviously, (F(X%), X) is a partial ordered set.

The Hausdorff metric in K(X) can be extended to F(X) by

(3.1) d(v},v?) = sup dy(vl, ).

O<ax<l
Then we can prove similarly as Puri and Ralescu in [29] that (F(X),d)
is a complete metric space.

A fuzzy valued random variable(cf. [17]) or fuzzy random variable is a
function X : @ — F(X), such that X,(w) ={z € X : X(w)(z) 2 a} isa
set random variable for every a € (0, 1].

A fuzzy random variable X is called integrably bounded if for every
a € (0,1], the real valued random variable ||X,(w)| k is integrable. A
fuzzy random variable X is called strongly integrably bounded if there
exists a u-integrable function f : @ — R such that | X,(w)|lx < f(w)
for almost every w € Q and for all a € (0, 1].
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Let L[, A, u; F(X)] be the set of all integrably bounded fuzzy ran-
dom variables and L![Q, A, u; F.(X)] denote the set of all fuzzy random
variables X € L[, A, u; F(X)] such that X, € L![Q, A, u; K (X)] for
all @ € (0,1]. Similarly we have the notation L![, A, u; F (X))

For each X,Y € L'[Q, A, u; F(X)], we can define the metric function
Do : L[, A, 5 F(®)] x L1 A, 1 F(X)] — R by

(32) Doo(Xa Y) = sup A(Xa;Ya)a
0<a<l

where A(X,, Ya) = [, du(Xa, Ya)dp.

Two fuzzy random variables X,Y € L[, A, u; F(X)] are considered
to be identical if Dy (X,Y) = 0. We also can define the metric function
Dy : L'[Q, A, s F(X)] x L[Q, A, p; F(X)] — R by

DI(X7 Y) = /l A(mea)dk(a),

where ) is the Lebegue measure. Then both of (L2, A, u; F(X)], Do)
and (L'[Q, A, p; F(X)],D;) are complete metric spaces, and L'[Q, A, u;
F.(%X)] D LN, A, u; F.(X)] are the closed subsets of L'[Q, A, u; F(¥)]
(cf. Li and Ogura [17)).

In the study of fuzzy random variables, the typical method is to use
" set valued theory, since all of the cut sets of a fuzzy random variable is
a family of set valued random variables satisfying additional properties.
The following is the basic Lemma.

LEMMA 3.1. Let {S, : @ € [0,1]} be a family of subsets of L![{, X],
S, be nonempty, closed, bounded and decomposable for every a > 0 and
satisfy the following conditions:

(1) a <= S5 C Sy,

[o.]
Ray<y<---<a, <+, lima,=a== S, = (] Sa,-

n—oo

n=1
Then, there exists a unique Y € L'[Q, A, u; F(X)] such that for every a,
(3.3) So = {f € L'Q, %); f(w) € Yo(w), ae.(u)}

If{S, : @ € [0,1]} have the above conditions (1) - (2) and

(3) for any a € (0,1}, S, is convex.

Then, there exists a unique Y € L'[Q, A, u; F.(X)] which satisfies
(3.3)



Set valued and fuzzy valued martingales T

The ezpected value of any fuzzy random variable X, denoted by E[X],
is a fuzzy set such that, for every « € (0, 1],

(3.4) (E[X])a = dl /Q Xadp = d{E(f); f € Sx.},

where the closure is taken in X. From the existence theorem, we can get
an equivalent definition as follows,

E(X)(z) =sup{a € [0,1] : z € dlE(X,)}.

From now on, we limit fuzzy random variable in L![Q, Ag, i; F(%)]
only for simplicity of notations.

The conditional expectation of fuzzy valued random variable X, de-
noted by E[X|A], is a fuzzy random variable satisfying the following
two conditions.

(3.5) E[X|A)] € L'[Q, Ao, i Fe(X)],

(3.6) / E[X|Ao)du = / Xdu for every A€ Ay.
A A
From [17], the conditional expectation E[X|Aq] uniquely exists.

{X", An;n € N} is called a fuzzy valued martingale or fuzzy martingale
iff

(1) X" € L'Q, A, u; F(X)], for all n € N,

(2) X" = E[X™1!A,], for all n € N.

A sequence of fuzzy random variables { X", n € N} is called uniformly
integrable if
lim sup / | X™(w)|du = 0,
A—00 neN
{IXm(w)1>A}
where | X™(w)| = d(X™(w), If0}), and Ijg} is the indicator function.
THEOREM 3.2. Let {X™, A,;n > 1} be a fuzzy valued martingale
such that X™ = E[X|A,],n > 1, where X € L'[Q, A, u; F(X)] (or
X € LYQ, A, u; F(X)] and X is reflexive) and X is strongly integrably
bounded. Then
(3.7) Dy (X", X®) — 0,

where X® = E[X|Aw| and LY[Q, A, u; F(X)] is the closure of all simply
fuzzy random variables (cf. [17]).
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THEOREM 3.3. Let {X", A,;n < —1} be a fuzzy valued martingale
such that X" = E[XYA,],n < —1, where X~! € L![Q, A, pt; Feo(%)]
(or X7' € L'Q, A, p; F(X)] and X is reflexive) and X! is strongly
integrably bounded. Then

(3.8) Dy (X", X~°) = 0
asn — —oo, where X~® = E[X|A_,).

THEOREM 3.4. Let X* be separable, {X", A,;n > 1} be a fuzzy
valued martingale in L'[Q, A, 1, F(X)]. fn<n<..<7, < ..isa
sequence of stopping times, and lim infy_,, | (2N} | X™|du = 0 for every
n € N. Then {X™, A, ;n > 1} forms a martingale. That is, for every
n>1,

E[X™ A, ] = X™.

In the above | X™(w)| = d(X™(w), If0y), where Iy} is the indicator func-
tion.

In [20], we defined the Kuratowski-Mosco convergence for the fuzzy
valued random martingales by using every cut set of them to be con-
vergent in the Kuratowski-Mosco sense as we defined in section 2. We
proved the following theorem.

THEOREM 3.5. Assume that X is a Banach space with the sep-
arable dual X* satisfying RNP. Then, for every uniformly integrable
fuzzy valued martingale {X", A,;n € N}, there exists a unique X*® €
L'Q, Ao, pt; Fe(X)] such that {X™, Ay;n € (NU o)} is a fuzzy valued

martingale, a.e. for eachn € N, X" = E[X*|A,], and X" N xoo,

A system { X", A,;;n € N} is called a fuzzy valued submartingale (resp.
fuzzy valued supermartingale ) iff

(1) X™ e L'[Q, Ay, 1; F (X)), for all n € N,

(2) X™ X E[X™! A4,], for n € N (resp. >).

By using the same method as in Theorem 3.5, we can get convergence
theorems for submartingales and supermartingales. However, it is a little
difficult to understand the topology of the space of fuzzy valued random
variables, induced by the family of set valued random variables in the
Kuratowski-Mosco convergence.
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4. Graph convergence for sequences of fuzzy valued random
variables and martingales

In this section, we introduce convergence in graph for fuzzy random
variables.

Let v € F(X), write
Grv={(z,y) € X x[0,1],v(z) 2 y}.

It is clear that Gr v denotes the domain between the curve of v and
X-axis if X is R. We call it the graph of v. Since all the cut set of v are
nonempty closed set, the graph of v is a closed set of space X x [0, 1].

For v,, v € F(X), v, is called to converge to v in graph (denoted by
U =5 v) iff Gr v, converges to Gr v in X X [0, 1] in the Kuratowski-
Mosco sense.

REMARK 4.1. If, for any a € [0,1], (V0)a Ky (V)a, We can prove

easily that v, 7, v. But the opposite is not correct. We can see it from
the following example.

EXAMPLE 4.1. Let ¥ =R', a < b < ¢ and

0, z<a,x>c
viz) =< 1/2, a<z<b,
1, b<z<q,

and
0, r<a,z>c,
vp(z) =< 1/2—-1/2n, a <z <},
1, b<z<e

Then v, <, v, but (v,,)1/2 does not converge to vy/2 in the Kuratowski-
Mosco sense.

THEOREM 4.2. Let v, v € F(X), then v, ST, v iff the following two
conditions are satisfied,

(1) for any x € X, there exists a sequence {z,,n € N} of X converging
to x in strong topology of X such that

liminf v,(z,) > v(z),
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(2) for any given subsequence {v,,} of {v,} and any sequence {z,, }
which converges to z in the weakly topology of X, we have

lim sup vy, (z,,) < v(z).
k—o0

In fact, we can prove that (1) is equivalent to

Gr v C s-liminf Gr v, in X x [0,1],

n—o0
and (2) is equivalent to
w-limsup Gr v, C Gr v, in X x [0,1].
n—o0

By using Theorem 4.2, we can prove the following theorem.

A sequence of fuzzy random variables { X™ : n € N} is called uniformly
integrably bounded iff there exists an p-integrable function f : Q@ — R
such that | X7 (w)||x < f(w) for almost every w € (, for all a € (0, 1]
and all n € N.

THEOREM 4.3. Assume that a sequence of fuzzy random variables
{X™ : n € N} is uniformly integrably bounded. Then, if {X" : n € N}

converges to an integrably bounded fuzzy random variable X in graph,
we have E[X"] £ E[X). Furthermore, if Ay is a sub-o-filed, then

E[X"|Ao) =5 E[X|A].

Now we give the following convergence theorems for fuzzy valued mar-
tingale, sub- and super-martingales.

THEOREM 4.4. Assume that X is a reflexive Banach space. Then, for
every uniformly integrably fuzzy valued martingales or submartingale

{X", An;n € N}, there exists a unique X® € L'Q, A, u; Fo(%)] such
that X" <0 X a.e.().

THEOREM 4.5. Assume that X is a reflexive Banach space, {X™, A,;n
€ N} is uniformly integrably fuzzy valued supermartingale and for each
a €(0,1],

Mo = ({f € LR, Aw, 1, %] : E(f|A,) € Sxz(An)}

n=1
is a nonempty set. Then there exists a unique X® € L'[Q, Aw, p; Fo(X))]
such that X™ <5 X aee..
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