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ON THE LEAST INFORMATIVE DISTRIBUTIONS
UNDER THE RESTRICTIONS OF SMOOTHNESS

JAE WON LEE, SUNG W0OK PARK, NIKITA VIL’CHEVSKIY AND
GEORGIY SHEVLYAKOV

ABSTRACT. The least informative distributions minimizing Fisher
information for location are obtained in the classes of continuously
differentiable and piece-wise continuously differentiable densities with
the additional restrictions on their values at the median and mode
of population in the point and interval forms. The structure of these
optimal solutions depends both on the assumptions of smoothness
and form of characterizing restrictions of the class of distributions:
in the class of continuously differentiable densities, the least infor-
mative distributions are finite and have the cosine-type form, and,
in the class of piece-wise continuously differentiable densities, the
least informative densities have ezponential-type tails, the Laplace
density in particular. The dependence of optimal solutions on the
assumptions of symmetry is also analyzed.

1. Introduction

The least informative (favorable) distributions minimizing Fisher in-
formation appear within the minimax robust approach proposed by Hu-
ber [1]. Robust methods are used to provide the stability of statistical
inference under the departures from the accepted distribution model.

One of the basic approaches to the synthesis of robust estimation pro-
cedures is the minimax principle. In this case, in a given class of densities
the least informative one minimizing Fisher information is determined.
The unknown parameters of a distribution model are then estimated by
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the means of the maximum likelihood method for this density. The ro-
bust minimax procedures provide a guaranteed level of the estimator’s
accuracy (measured by the supremum of an asymptotic variance) for any
density in a given class.

Let zy,... ,z, be independent random variables with common density
f(z — ) in a convex class F. Then the M-estimator § of a location
parameter 0 is defined as a solution of the following equation

i=1

with a suitable score function .
The minimax approach implies the determination of the least infor-
mative density f; minimizing Fisher information I(f) in the class F
, 2
O pmwmin, 1= [ [H) e
followed by designing the optimal maximum likelihood estimator with
the score function

@)
2 T) = —"—->=.
Under rather general conditions (see Huber, [1]), /n(8 — 6) is asymp-
totically normally distributed and the asymptotic variance V' (1, f) has
the saddle point (v, fo) with the corresponding minimax property

V (o, ) <V (%, fo) L V(¥ fo).

The left-hand part of this inequality shows that the minimax variance
of the M-estimator with the score function ¢ provides the guaranteed
level of the estimator’s accuracy for any density in the class F:

1
V(¢07 f) < V(¢0)f0) = m')'
The following conditions are usually assumed for the classes F:
Q @20, f0=f@), [f@a=-1

Depending on the additional, characterizing the class F, restrictions,
different forms of the least informative density f; and the corresponding
score function 1, may result. Note that the solution of the variational
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problem (1) with the only side restrictions (3) is degenerate: fy(z) =0
forallz € R.

It is a well-known fact that the properties of the solutions of varia-
tional problems depend on the assumptions of smoothness, and our main
goal is to show that the character of these assumptions determine the
essential features of least informative distributions, for instance, they
determine whether these distributions are finite or not.

There are many results on the least informative distributions under
various characterizing restrictions, most of them are concerned with the
classes of e-contaminated neighborhoods of a given distribution (see Hu-
ber, [1]; Sacks and Ylvisaker, [2]; Tsypkin, [3]; Collins and Wiens, [4];
Wiens, [5]). The qualitatively other types of distribution classes with a
bounded variance were considered by Vil’chevskiy and Shevlyakov [6].
The common and basic feature of these solutions is the presence of ezpo-
nential tails, and they imply the boundness of the corresponding score
functions and robustness of M-estimators of location.

We now are especially interested in the following solutions. In the

class of the approzimately finite distributions with the bounded subrange
(see Huber, (1})

I}

where [ and 3 are given parameters of this class, the latter characterizing
the level of a prior uncertainty of a distribution, the least informative
density consists of the cosine-type and the exponential-type parts:
Aj; cos?(Bx) lz] <1
(4 z) = ’ =)
(4 folz) { Ayexp(—Bulz)), |z > 1
The constants A;, A, B; and B, are determined from the system of
equations including the norming condition, the characterizing restric-

tion of the approximate finiteness, and the transversality conditions (see
Gelfand and Fomin, [7]) inducing the smooth glueing at |z| ={

/_:fo(x)dx=1, /_llfo(fc)dz=1—ﬂ,

fo(l = 0) = fo(l +0), f'l=0) = f'(L +0).
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In the case of 8 = 1, approximately finite distributions become finite

F={f: /_if(@dw:l},

and the least informative density is of the form

(5) fola) = { cos e C), <

In the class of nondegenerate densities (see Tsypkin, [3])
1
=< f: >
F={r: 102 g>0},
the least informative density is the Laplace

©) fule) = o exp (—%) .

The same structures also manifest in the more general cases.

2. Least informative distributions: the case of continuously
differentiable densities

The information on the basic characteristics of distributions such as
mode, median, expectation, variance, etc., can be obtained by applying
the methods of exploratory data analysis. It seems naturally that this
information should be taken into account while designing methods and
algorithms of data processing, for instance, within the minimax robust
approach.

THEOREM 1. Let the value of a density f(z) at mode Mo = arg max
f(z) be given: f(Mo) = f,.. Suppose f(z) is continuously differentiable
on R. Then the least informative density fy minimizing Fisher informa-
tion for location is given by:

_ [ fncoinfm (@ — Mo)/2), |o—Mo| < 1/fm
(1 hl@) = { 0, & — Mo| > 1/ fn.

COROLLARY 1. The least informative density (7) is also valid under
the restriction of the inequality form

(8) f(Mo) > fm > 0.
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The similar results are valid under the restrictions on the value of a
density at median of population.

THEOREM 2. Let the value of a density f(z) at median Me =
F~1(1/2) be given: f(Me) = f,. Suppose f(z) is continuously differ-
entiable on R. Then the least informative density f, minimizing Fisher
information for location is given by:

| fmcos?[nfn(z — Me)/2], |z — Me| <1/fm,
©) f°(“’)‘{0, ! {x—Me=>1/fm.

COROLLARY 2. The least informative density (9) is also valid under
the restriction of the inequality form

(10) f(Me) > fm > 0.

Minimum information is

I{fo) = szri-

3. Least informative distributions: the case of piece-wise
continuously differentiable densities

We now consider the case of piece-wise continuously differentiable
densities under the same conditions as in Section 2.

THEOREM 3. Let the values of a density at mode or at median be
given:

f(Mo)=fn or f(Me)= fn.
Suppose f(z) is piece-wise continuously differentiable on R. Then the
least informative density f, minimizing Fisher information is the Laplace:

(11) fO(x) = fmexp (—2fm|z_-770|),
where o = Mo or zy = Me, respectively.

COROLLARY 3. The Laplace density (11) is also the least informa-
tive under the restrictions of the inequality form (8) and (10).

Minimum information is

I(fo) = 4f2.



760 J. W. Lee , S. W. Park, N. Vil'’chevskiy and G. Shevlyakov

The obtained results can be generalized on the cases of integral re-
strictions on the mass of a distribution in the central zone:

b
(12) /f(a:)dz=1—,3>0, Mo € (a,b)
and
: b
(13) /f(:c)d:n=1—ﬂ>0, Me € (a,b),

where a, b and § (0 < 5 < 1) are given.

THEOREM 4. Under the conditions (12), (13) and with piece-wise
continuously differentiable densities on R, the least informative density
fo minimizing Fisher information for location is given by formula (4):

_f Ajcos?(Bi(z — m)], |z — =m0 <1,
o e ={ B T, Bons
where g = (a +b)/2 and | = (b — a)/2. The constants A, As, By and
B, are determined from the relations

_(a-p) _9
A= Gremey D T
_,B/\e’\ A
A2—' Y ) B2"‘2l)

where the auxiliary parameter § is the solution of the following equation
(6 +sind)tand 1-p
2(cosé)2 = B’

and A is given by
A =4dtand.

COROLLARY 4. The least informative density (14) is also valid under
the integral restrictions of the inequality form

b
/f(m)del—ﬂ>O, Mo € (a,b) or Me € (a,b).

Minimum information is

478?

I(fo) = O+
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REMARK 1. Note that all obtained least informative distributions
are symmetric, though no any assumptions of symmetry have been as-
sumed.

4. Least informative distributions: the dependence on sym-
metry assumptions

Now we consider the dependence of optimal solutions on the assump-
tions of symmetry.

THEOREM 5. Let mode Mo be in [a,b], median Me - in [c,d), and
f(Mo) = f,,. The parameters a,b,c,d and f,, of this class are assumed
given. Let f(x) be in the class of continuously differentiable functions.
Under these assumptions, the least informative density f, minimizing
Fisher information for location is given by:

e if [a,b]([c,d] #0 then
folz) = { g:n cos (T frn (2 — 20)/2), |z — 20) < 1/ fm,

|£E — .’E()l > 1/fm,
where o is an arbitrary point in [a,b]([c, d], and I(f,) = 72f2;
o if [a,b]Nlc,d] =0 then fo(z) is nonsymmetric with the sim-
ilar cosine-type extremals and has a rather cumbersome struc-

ture (here we only announce this result — it needs a separate
consideration).

REMARK 2. Note that these least informative distributions are fi-
nite.

But if we assume the piece-wise continuously differentiability for f(z)
then the least informative density is described by ezponential-type ex-
tremals and now is not finite.

THEOREM 6.

o If [a,bl([c,d] # @ then the least informative distribution is
the Laplace:

fO(x) = fm exp(—2fm |IL‘ - $0|)7
where x, Is an arbitrary point in [a, b]([c, d], and I(fy) = 4f2;
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o if [a,b](c,d] =0 and b<c then

fm D2 fn(z — B, 1<t
fO(ZL‘) = fm exp[—2fmw(x - b)], b<z < c,
fmexp[—2fnw(c—b)|exp[-2fnplz — )], z>¢

the parameters w and p are obtained from the following equations
w=2—exp|-2fnwlc—b),  p=expl-2fmwlc—b),
and
I(fo) = 4{1 + (1 — exp(=2w(c — b))]’} £7.
REMARK 3. It follows from Theorem 5 and Theorem 6 that, un-

der weak departures from symmetry assumptions, the least informative
distributions still remain symmetric.

5. Proofs

Using variational methods, we first obtain the structure of the optimal
solutions and then verify their validity.

Proof of Theorem 1. In this case, the variational problem (1) is
written as

(15) F(f.) = min /_ Z (’}((j)))Q f(z) dz

subject to
fMo) =0, f(Mo)=1n>0, f2)20, [ f@)dr=1
Consider a new function

f(@) = fu®(fm(z — Mo)), u(t)>0.

Then the variational problem (15) can be reformulated as

F (fn) =407,

where J is a solution of the following variational problem:

J = min / " W () dt

=00
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subject to

v (0)=0, u(0)=1, wu(t)>0, /oou2(t)dt=1.

o0

Lagrange functional for this problem is given by

L{w, \) = / (1) dt + A ( / W2(t) dt — 1) ,

where A is Lagrange multiplier. Hence Euler equation has the form
(16) u"(z) + du =0,
and its solution satisfying to initial conditions has the form
7r
u(t) = cos VAL, if |t] < —=,
0 < 5n

smoothly “glued” with “zero” density.

We now check the optimality of the obtained solution. It is known
(see Huber, [1]) that the density f; minimizes Fisher information in a
convex class F if and only if

(17 2w =0

e=0
where f, = (1—¢€)fo+¢f, and f is an arbitrary density with I(f) < oo.
This inequality can be rewritten as

(18) / " (@' — ) (f — fo)de > 0,

o]
where () is the optimal score function (2).
Finally, the direct evaluation of the left-hand side of (18) gives

Ju@ - p@ids,
which by norming condition is evidently zero, and this remark concludes

the proof.

Proof of Corollary 1.  Let f(Mo) =y > f, > 0, then I(fo) =
m2y? > w2f2  and evidently minimum is attained at y = f,,.

Proof of Theorem 2. In main features, this proof repeats the above-
described scheme.

Proof of Theorem 3. Another solution of Euler equation (16) is given
by exponent u(t) = e~V=M, therefore we have the Laplace density (11)



764 J. W. Lee , S. W. Park, N. Vil'’chevskiy and G. Shevlyakov

as the least informative. Final check should be done using the inequality
(18).

All remained proofs can be directly performed by checking the sign
of the left-hand side of the inequality (18).
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