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A NEW LOOK AT THE FUNDAMENTAL
THEOREM OF ASSET PRICING

J1A-AN YAN

ABSTRACT. In this paper we consider a security market whose asset
price process is a vector semimartingale. The market is said to be
fair if there exists an equivalent martingale measure for the price
process, deflated by a numeraire asset. It is shown that the fairness
of a market is invariant under the change of numeraire. As a conse-
quence, we show that the characterization of the fairness of a market
is reduced to the case where the deflated price process is bounded.
In the latter case a theorem of Kreps (1981) has already solved the
problem. By using a theorem of Delbaen and Schachermayer (1994)
we obtain an intrinsic characterization of the fairness of a market,
which is more intuitive than Kreps’ theorem. It is shown that the
arbitrage pricing of replicatable contingent claims is independent
of the choice of numeraire and equivalent martingale measure. A
sufficient condition for the fairness of a market, modeled by an It6
process, is given.

1. Introduction

In the early 70’s Black and Scholes (1973) made a breakthrough in
option pricing theory by deriving the celebrated Black-Scholes formula
for pricing European options via a “hedge approach”. This work was fur-
ther elaborated and extended by Merton (1973). Cox and Ross (1976)
is the overture of a modern theory of option pricing—the risk-neutral
valuation or arbitrage pricing. A key step in this direction was made
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in Harrison and Kreps (1979). They remarked that the hedge approach
is not mathematically rigorous unless one excludes doubling-like strate-
gies. Harrison and Kreps imposed some “admissibility” condition on
the trading strategy and showed that the existence of an equivalent
martingale measure for the deflated price processes implies the absence
of arbitrage. Since then many attempts have been devoted to show the
converse statement. Harrison and Pliska (1981) solved this problem in
discrete-time and finite-state case. This result is referred to as the funda-
mental theorem of asset pricing. In the general state and discrete-time
with finite and infinite horizon case, this problem has been solved by
Dalang-Morton-Willinger (1990) and Schachermayer (1994) respectively.
However, in the continuous-time case and the discrete-time with infinite
horizon case the absence of arbitrage is no longer a sufficient condition
for the existence of an equivalent martingale measure. A “no-free-lunch”
condition, slightly stronger than no-arbitrage condition, was introduced
by Kreps (1981). Under a mild but irrelevant separability assumption
Kreps proved that if the deflated price process is bounded then the mar-
ket is fair if and only if the market has no free-lunch. See Schachermayer
(1994) for a transparent proof of this result. Without knowing this result
of Kreps, the problem was attacked by Stricker (1990), who discovered
that a result of Yan (1980) (or more precisely, the method of its proof)
is an appropriate tool for solving the problem. The result of Stricker
was re-examinated and extended by Delbaen (1992), Kusuoka (1993),
Lakner (1993), Delbaen and Schachermeyer (1994), Frittelli and Lakner
(1994).

In this paper we consider a semimartingale model for a market. The
market is said to be fair if there exists an equivalent martingale measure
for the deflated price process. In section 2 we show that the fairness of
a market is invariant under the change of numeraire and give a charac-
terization of self-financing strategies. In section 3, by augmenting the
original market with a new asset we show that the characterization of
the fairness of a market can be reduced to the case, where the deflated
price process is bounded. By using a theorem of Delbaen and Schacher-
mayer (1994) we obtain an intrinsic characterization of the fairness of
a market. If the asset price process is continuous, a theorem of Del-
baen (1992) implies a more elegant result. In section 4 we show that a
fair market has no arbitrage with allowable strategies and the arbitrage
pricing of replicatable contingent claims is independent of the choice of
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numeraire and equivalent martingale measure. Finally, in section 5 we
give a sufficient condition for the fairness of a market modeled by an It
process.

2. The characterization of self-financing strategies and fair
market

We fix a finite time-horizon [0,T] and consider a security market
which consists of m + 1 assets whose price processes (S!),i = 0,--- ,m
are assumed to be strictly positive semimartingales, defined on a filtered
probability space (@2, F, F;, P) satisfying the usual conditions. Moreover,
we assume that F is the trivial o-algebra. For notational convenience,
we take asset 0 as the numeraire asset. We set v,=(S7)™" and call v,

the deflator at time t. We set S; = (S},---,S™) and S; = (S},---,SM),
where §f =551 < i < m. We call (:5’;) the deflated price process of
the assets. Note that the deflated price process of asset 0 is the constant
1.

The continuous trading is modeled by a stochastic integral. In order
to be able to define a trading strategy we need the notion of integration
w.r.t. a vector-valued semimartingale (see Jacod (1980)). Such inte-
gral is defined globally and not componentwise. A basic fact is that a
vector-valued predictable process H is integrable w.r.t. a vector-valued
semimartingale X if and only if the sequence (Ijg|<,H).X converges
in the semimartingale topology. In this case the limit gives the inte-
gral H.X. Consequently, if H = (H®,..- ,H™) is integrable w.rt. a
semimartingale (X°,---,X™) and H° is integrable w.r.t. X then we
have

(2.1)  H(X%---,X™) =H’ X"+ (H',--- ,H™).(X},--- , X™).
A trading strategy is a R™*!-valued F;-predictable process ¢ = {€°, 6},

where

0(t) = (6'(¢), -~ ,0™(t)),
such that ¢ is integrable w.r.t semimartingale (5%, S) with § = (S1,---,
S™). 6(t) represents the numbers of units of asset i held at time ¢.
This notion of trading strategy is not very realistic. However it is conve-
nient for mathematical studies. The wealth V;(¢) at time ¢ of a trading
strategy ¢ = {6°,6} is

(2.2) Vi(8) = 6°(1) S0 + 6(1) - S,
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where 0(t) - S, = Y7 6i(t)S?. The deflated wealth at time ¢ is V,(¢) =
Vi(@)v:. A trading strategy {6°,6} is said to be self-financing, if

(2.3) Vi(d) = Vi(g) + / H(u)d(S°, 5.).

In this paper we always use notation fot H,dX, or (H.X); to stand for
the integral of H w.r.t. X over the interval (0,t]. In particular, we have
(H.X)o =0.

It is easy to see that for any given R™-valued predictable process 4
which is integrable w.r.t (S;) and a real number z there exists a real-
valued predictable process (69) such that {6°,8} is a self-financing strat-
egy with initial wealth z.

A process {6°, 0} is said to be elementary, if there exist a finite parti-
tion of [0,T): 0 =ty <t; <--- < t, =T and a sequence of R™*'-valued
random variables (&1, -+ ,&,), with each &; being F;,_ -measurable, such
that

0'(t) =) T, p(t), t€[0,T], 0<i<m.
k=1

If we take stopping times t;s instead of deterministic times, the corre-
sponding process is said to be simple. If furthermore (&,--- ,£,) are
elementary random variables (i.e. taken only a finite number of values),
the corresponding process is said to be very simple.

DEFINITION 2.1. A security market is said to be fair if there exists a
probability measure Q equivalent to the “ob jective” probability measure
P such that the deflated price processes (S;) is a (vector-valued) Q-
martingale. We call such a Q an equivalent martingale measure for the
market.

We denote by M’ the set of all equivalent martingale measures for
the market, if asset j is taken as the numeraire asset.

The following theorem shows that the definition of fair market does
not depend on the choice of numeraire.

THEOREM 2.2. The fairness of a market is invariant under the change
of numeraire.
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Proof. Assume that M° # (). For a P* € M° we define a probability
measure Q by

dQ _ 8§
P+ g

We denote Q by h;(P*). We are going to show that h; is a bijection
from MO onto M?. Let v, = (S7)~! and put

§i=’)’£5§, 0<i<m.

(2.4) =0 (S2)7' S5

Since (S9)-157 = 57 is a P*-martingale, we must have

dQ S0
dpP* S

(2.5) M, :=E’ [

F=2(sh)is), 0<t<T

From the fact that

MS; = M(S})7'Si = ggs;, 0<i<m

we know that Q € M7, The theorem is proved. a

A strategy is said to be admissible, if its wealth process is non-
negative. A strategy is said to be tame, if its deflated wealth process
is bounded from below by some real constant. The weakness of the
notion of tame strategy is that it is not invariant under the change of
numeraire. Moreover, all bounded elementary or simple strategies are
not tame. We propose below to extend the notion of tame strategy to a
notion of “allowable strategy” .

DEFINITION 2.3. A strategy ¢ = {6° 6} is said to be allowable, if
there exists a positive constant c¢ such that the wealth (V;(¢)) at any
time ¢ is bounded from below by —c 3 7" S;.

It is easy to see that all bounded elementary or simple strategies
are allowable, and the notion of allowable strategy does not involve the
numeraire.

DEFINITION 2.4. A market is said to have no arbitrage with allowable
strategies if there exists no allowable self-financing strategy with initial
wealth zero and a non-negative terminal wealth V7 such that P(VT >
0) > 0.

A key point of arbitrage pricing of contingent claims is the following
characterization of the self-financing strategy.
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THEOREM 2.5. A strategy ¢ = {6°,0} s self-financing if and only if
its wealth process (V;) satisfles

(2.6) dV, = 6(t)dS,,

where V, = Vivs. In particular, the deflated wealth process of an allow-
able self-financing strategy is a local Q-martingale and a Q-supermartingale
for any Q € MO,

Proof. Assume that ¢ = {6°, 6} is a self-financing strategy. First of
all, by 1t6’s formula, we have

@7
d(1> St) = d(’YtS?a ’Ytst) = 7td(S?, St) =+ (S?, St)d’)’t + d([SO, '7]15) [S, ’Y]t)-

Secondly, by (2.1) we have
(2.8) #(t)d(1, S,) = 6(t)dS..
Thirdly, by (2.3) we have

AV, = 0°(t)AS + 0(t) - AS;,
which together with (2.2) implies
(2.9) Vie = 6°(2)SY. +4(¢t) - Ss-.

Finally, applying It6’s formula to the product V;y; we get from (2.3) and
(2.7)-(2.9)

AV, = Vi(®)dy +n-dV; +d[V, e
= (°(t)Sp- +6(t) - Si-)dvs + - (6°(2), 8(1))d(SY, S:)
+6°()d[S°, ) + 6(2) - d[S, 7))
= 6(t)dS,.
Similarly, we can prove the “if’ part. a

Now assume that ¢ = {6° 8} is an allowable self-financing strat-
egy. By definition there exists a positive constant ¢ such that Vi(g) >
-y s S:, t€[0,T). Put

i =0 +c, 0<i<m, ¢ ={6,6}
Then by (2.6) we have dV,(¢;) = 6;(t)dS, and
V(1) = Vig) +¢d_Si > 0.

=0
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By a theorem of Ansel and Stricker (1994), (Vi(¢,)) is a local Q-martingale
and Q-supermartingale. Thus so is (V,) because Cr. S is a Q-
martingale.

As a corollary we obtain:

THEOREM 2.6. A fair market has no arbitrage with allowable strate-
gies.

Proof. Let Q € M°. Let {,6°} be an allowable self-financing strat-
egy with initial wealth zero. By Theorem 2.5 the deflated wealth process
of ¢ is a Q-supermartingale. Therefore, we must have Eq[Vr] < 0. So
the market has no arbitrage with allowable strategies. a

3. The fundamental theorem of asset pricing

The fairness of a security market is the basis of the so-called “pricing
by arbitrage”. By the fundamental theorem of asset pricing we mean a
characterization of the fairness of a market. Roughly speaking, such a
characterization states that the market is fair if and only if the market
has no “free-lunch”. In the literature several notions of “free-lunch”
have been introduced in different circumstances. A common feature of
these notions is that they involve an appropriate topological closure of
the set V' — L%, where V is the set of all achievable gains by a certain
bounded elementary (or simple) strategy. If the deflated price process is
a bounded (vector-valued) semimartingale, several characterizations of
the fairness are available.

Now we introduce a new asset, indexed by m -+ 1, whose price process
is:

(3.1) et =Y "8
i=0

We augment the market with this new asset. It is readily seen that the
new market is fair if and only if the old one is fair. According to Theorem
2.2 in order to characterize the fairness of the new market one can choose
asset m+ 1 as the numeraire asset. In doing so the deflated price process
becomes bounded. This trick not only reduces the problem to the easy
case but also leads to an intrinsic characterization of the fairness of a
market in the sense that no numeraire asset is involved.
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In the following we consider the augmented market and choose the
new asset as the numeraire asset. We denote by (X?) the deflated price
process of asset ¢ (i.e. X} = (S/*1)715¢) and set X, = (X?,---, X™).

A theorem of Lakner (1993, Theorem 2.1) implies immediately the
following characterization of the fairness of a market.

THEOREM 3.1. Let process (X,) be defined as above. Put
(3.2) V ={(H.X)r: H is a very simple process}.
Then the (original) market is fair if and only if
(3.3) VoIFNLY = {0},
where V — LY is the closure of V — LY in the o(L*®, L'(P))-topology.

REMARK. Condition (3.3) can be interpreted as “no-free-lunch” in
a certain sense. In fact, if condition (3.3) is violated, then there is an
fo € LY\ {0} and a net (@q)qaes of very simple self-financing strategies
with initial wealth 0 such that at the terminal time the agent “throws
away” the amount of money h,SP*! with h, € LY the random variable
(ST Vi (¢s) — ho becomes close to f, w.r.t o(L>®, L(P))-topology.
On the other hand, according to Schachermayer (1994) the Kreps’ “no-
free-lunch” condition can be stated as follows:

(3.4 W= I n L= n L2 = {0},
where
(3.5) Vo = {(H.X)r : H is an elementary process}.

So the economic meaning of Lakner’s no-free-lunch condition (3.3) is
more convincing than the Kreps’ one. We refer the reader to Kusuoka
(1993) for another “no-free-lunch” condition which is similar to condition
(3.3). In view of the economic meaning of no-free-lunch, an equivalent
martingale measure is also called a risk-neutral probability measure.

As pointed out in Delbaen and Schachermayer (1994) the drawback
of a variant of Kreps’ theorem is twofold. First it is stated in terms of
nets or topological closure, a highly non intuitive concept. Second it
involves the use of very risky positions. The main theorem of Delbaen
and Schachermayer (1994) remedies this drawback. By using this theo-
rem we obtain the following intrinsic characterization of the fairness of
a market.
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THEOREM 3.2. The market is fair if and only if there is no sequence
(¢n) of allowable self-financing strategies with initial wealth 0 such that
Vi(¢n) > =137 Sh, as., for all m > 1 and such that Vr(¢,), a.s
tends to a non-negative random variable £ satisfying P( > 0) > 0.

Proof. Consider the market augmented with asset m + 1 and choose
asset m + 1 as the numeraire asset. Let ¢ = {¢°,--- ,¢™} be an “ad-
missible” integrand for the vector semimartingale X = (X°,---,X™),
in the sense of Delbaen and Schachermayer (1994) that there is a posi-
tive constant ¢ such that (¢.X)r > —c. We can introduce a predictable
process ¢™*! such that ¢ together with ¢™*! constitutes a self-financing
strategy with initial wealth O for the augmented market. By Theorem
2.5 we have

T
(36) (SE Y Vi(g, oY) = / $(£)dX..
0
On the other hand, we have
Vi(¢, ™) = Vi(¢) + oS, 0<t<T.
Thus, if we put
= ¢+, 0<i<m,

then we have Vi(¢') = t(¢,¢m+1). Consequently, by (3.6) ¢’ is an al-
lowable strategy for the original market. It is easy to see that ¢’ is
self-financing and its initial wealth is 0. Conversely, for any allowable
strategy ¢ for the original market, {¢, 0} is a self-financing strategy for
the augmented market and we have

(S Vi) = (S, 0) / $(t)dX..

Thus, by the vector versions of Theorem 1.1 and Corollary 3.7 of Delbaen
and Schachermayer (1994) we can conclude the theorem. O

REMARK. According to Delbaen and Schachermayer (1994) the con-
dition in Theorem 3.2 is called the condition of no free lunch with van-
wshing risk.

If the asset price process is continuous, a theorem of Delbaen (1992)

(Theorem 5.1) gives us a more elegant characterization of the fairness of
a market.
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THEOREM 3.3. Assume that the asset price process is continuous.
Then the market is fair if and only if the following condition is satisfied:

If (¢,) is a sequence of very simple self-financing strategies such that
Vo(¢n) =0, |V(¢n)] < S™1,Vn > 1 and Vy(¢,)~ — 0 in probability,
then Vr(¢,)* — 0 in probability.

4. Arbitrage pricing of contingent claims in a fair market

In this section we will study the problem of the pricing of European
contingent claims in a fair market. By a (Furopean) contingent claim
we mean a non-negative Fp-measurable random variable. Let £ be a
contingent claim. One raises naturally a question: what is a “fair” price
process of {7 Assume that ~,£ is P*-integrable for some P* € M. We
put

(4.1) Vi =7 'E[v,E | A

If we consider (V;) as the price process of an asset, then the market
augmented with this asset is still fair, because the deflated price process
of this asset is a P*-martingale. So it seems that (V;) can be considered
as a candidate for a“fair” price process of £. However this definition of
“fair” price depends on the choice of equivalent martingale measure. We
will show that for replicatable contingent claims (see Definition 4.1) this
definition is reasonable.

DEFINITION 4.1. Let P* € M A European contingent claim ¢
is said to be P*-replicatable (or attainable) if v,§ is P*-integrable and
there exists an admissible self-financing strategy ¢ such that its terminal
wealth is equal to ¢ and its deflated wealth process is a P*-martingale
(i.e. E*[v.€] = %Vo(¢)). Such a strategy is called a P*-hedging strategy
for &.

The following theorem shows that the “fair” price process of a repli-
catable contingent claim is uniquely determined.

THEOREM 4.2. Let P*, P’ € M and ¢ be P*- and P’-replicatable.
Let (V;) (resp. (U:)) be the wealth process of a P*- (resp. P’-)hedging
strategy for . Then (V;) and (U,) are the same. Moreover, V; is given
by (4.1) and we have

(4.2) Vi = essianeMo'yt“lEQ[fyTﬂ]-}].
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Proof. Put ‘Z =~ Vi, l7t = ;. Then (17}) is a P*-martingale and a
P’-supermartingale and (U;) is a P’-martingale and a P*-supermartingale.
Note that Uy = Vp = £ and we have

E'[Vo| R =V, > EVr| F] = E[Ur| 7] = U..

Thus we have V; > U, as. Similarly, we have U; > V;, a.s. Hence
V = U. The last assertion of the theorem is obvious. O

REMARK. According to Theorem 4.2, for a P*-replicatable contingent
claim £ it is natural to define its “fair” price at time ¢ by (4.1). We call
this method of pricing the arbitrage pricing (or pricing by arbitrage, or
risk-neutral valuation).

The following theorem shows that the arbitrage pricing of replicatable
contingent claims is independent of the choice of numeraire.

THEOREM 4.3. Let P* € M° and £ be a P*-replicatable contingent
claim and ¢ be a fair hedging strategy for £. Then for any 0 < 7 < m
£ is an h;(P*)-replicatable contingent claim, and its “fair” price process
remains the same.

Proof. We keep the notations in the proof of Theorem 2.2. We have
by (4.1)
/ * / Sg * /
Eq[v, ] = E' [Mrv, €] = E{E €] = 1 Vo.
This implies that a P*-hedging strategy for € is also a Q-hedging strategy

for €. So € is a Q-replicatable contingent claim. Moreover, by the Bayes
rule we have

(%) Eq[,¢| 7]

fl

(7)™ My TE [Mry, €| 7]
v B gl A

This proves that the “fair” price process of ¢ is invariant under the
change of numeraire.

Let P* € M The market is said to be P*-complete, if every con-
tingent claim £ with v,{ being P*-integrable is P*-replicatable. If there
exists a unique martingale measure for the market then by a general
result of Jacod-Yor (1977), the market is complete. In a complete mar-

ket, the fair price process of a replicatable contingent claim £ is given by
(4.1). a

Il
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5. The It6 process model

We fix a finite time-horizon T. Let B = (B!,--- , B%) be a Brownian
motion on a complete probability space (2, F, P). We denote by (F;) the
natural filtration of (B;) and by L the set of all measurable (F;)-adapted
processes.

We consider a financial market which consists of m + 1 assets. The
price process (S¢) of each asset ¢ is assumed to be a strictly positive It6
process. Since its logarithm is also an It6 process, we can represent (S;)
as

(51  dSi=§ [ai(t)dBt + ,ﬁ(t)dt], Si=p, 0<i<m,

We call = (1, -+, u™) the vector of expected rate of return and o the
volatility matriz.

We specify asset 0 as the numeraire asset and set v, := (SP)~!. By
Itd’s formula we have

(5.2) dy, = —w[e (OB + (K(0) — |0 () )t
(5.3) dSi = §i [ai(t)dBt + bi(t)dt], 1<i<m,
where

a'(t) = o*(t) — o°(t); B(t) = p'(t) — p0(t) + lo°(B)* = o*() - ().
In particular, If asset 0 is a bank account with interest rate process
(r(t)), then

a'(t) =o'(t), b(t) =p(t)—r()-
One raises naturally a question: what conditions we should impose

on coefficients a and b of the Itd process (S;) such that the market is
fair? The following theorem gives a partial answer to this question.

THEOREM 5.1. If the market is fair, the linear equation
(5.4) a(t)y(t) = b(t), dt x dP—a.e. as., on [0,T] x Q

has a solution ¥ € (L£?)¢, where L* stands for the set of all adapted
process ¢ with fOT #?*(u)du < oo. Conversely, if

(5.5) E [exp % /0 T]ai(t)lzdt}J <oo, 1<i<m,
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and equation (5.4) has a solution ¢ € (L£*)? satisfying

(5.6) E [exp {% /0 ' [z,[:(t)|2dt” < o0,

then the probability measure Q with Radon-Nikodym derivative % =
E(—y.B)r is an equivalent martingale measure.

Proof. Let Q € M. Put
dQ
M, = E(zﬁm).

Then (M,) is a P-martingale. By the martingale representation theorem
for Brownian motion there exists ¢ € (£?)? such that dM; = ¢(t)dB,.
Set ¥(t) = —o(t ) /M;. Then M = £(—.B) and by Girsanov’s theorem
B! = B, + fo s)ds is a Brownian motion under Q. Moreover, by a
Theorem of Fupsakl, M., G. Kallianpur and H. Kunita (1972), (Bt) has
also the martingale representation property w.r.t. (F;) under Q. Thus
there exists some o* € (£2)™*? such that

dS; = o*(t)dB; = o*(t)(dB; + ¥(t)dt).

According to the uniqueness of the representation of It process (§t) and
the invariance of the stochastic integral under a change of probability,
from (5.3) we know that o*(t) = S,a(t), dt x dP-a.e., a.s., and con-
sequently, a(t)y(t) = b(t), dt x dP-a.e., a.s. So ((t)) is a solution of
equation (5.4). ‘

Now assume that a satisfies (5.5), 1 is a solution of (5.4) and verifies
(5.6). By the Novikov theorem £(—1.B) is a P-martingale. So we can
define a probability measure Q such that % = &(—~¢.B)r. In order to
prove that (§t) is a Q-martingale, it suffices to prove that the product
£(—.B)S is a P-martingale. By (5.3) we have

Si= Soexp{/ $)dB; + b'(s)ds] ——/ la*(s |2ds}

Thus from (5.4) we know that

(508 = Few { [ (@) ~visa. = 3 [ 1) ~ (o)Pas}

Once again by the Novikov Theorem & (~¢.B)S’ is a P-martingale. 0O
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REMARK. Without condition (5.5) Q is an equivalent local martin-
gale measure but not necessarily a martingale measure. We refer the
reader to Ansel and Stricker (1993) for an investigation on this subject.

The following theorem provides a sufficient condition for the existence
of a unique equivalent martingale measures.

THEOREM 5.2. Assume that m > d, a satisfies (5.5) and a” (t)a(t)
are non-degenerated for a.e. t, where a (t) stands for the transpose of
a(t). Put ¢(t) = (aT(t)a(t))'aT(t)b(t). If ¢ satisfies (5.4) and (5.6),
then there exists a unique equivalent martingale measure P* for the
market. Moreover, we have

) =ew{~ [woim -} [ woras} osisr

|

apP

Proof. By Theorem 5.1 there exists an equivalent martingale measure.
To prove the uniqueness, let Q be an equivalent martingale measure.
There exists a 6 € (£?)? such that 42 = £(—0.B)r. By Theorem 5.1, we
have a(t)6(t) = b(t). Consequently, applying (a”(t)a(t)) 1a”(t) to the
both sides of this equation we get §(t) = 1(t). The uniqueness is thus
proved. ]

REMARK. If m = d, then 9 satisfies (5.4) automatically. In this case if
(5.5)-(5.6) are satisfied, then there exists a unique equivalent martingale
measure if and only if a(t,w) is non-singular, for (¢,w) € [0,T] x Q, a.e.,
a.s. See Karatzas (1997).
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