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INVARIANTS OF ONE-DIMENSIONAL
DIFFUSION PROCESSES AND APPLICATIONS

SHINZO WATANABE

ABSTRACT. One-dimensional diffusion processes are characterized
by Feller’s data of canonical scales and speed measures and, if we
apply the theory of spectral functions of strings developed by M. G.
Krein, Feller’s data are determined by paris of spectral characteristic
functions so that theses pairs may be considered as invariants of
diffusions under the homeomorphic change of state spaces. We show
by examples how these invariants are useful in the study of one-
dimensional diffusion processes.

1. Introduction

The general theory of one-dimensional diffusion processes has been
established for more than forty years by the works of W. Feller, K. Ito,
H. P. McKean and E. B. Dynkin, among others, (cf. e.g., [3]). The
analytical part of the theory consists of such notions as Feller’s gener-
alized second-order differential operator and Feller’s boundary condition
which are defined by giving a pair of canonical scale and speed mea-
sure (cf. [2], [3], [9]). On the other hand, M. G. Krein ([7]) studied
in early fifties a spectral theory of strings by generalizing the classical
work of Stieltjes ([10]) on continued fractions and moment problems (cf.
e.g., [1]). Krein’s theory may be said as a spectral theory for Feller’s
operators; it seems to us, however, that applications of Krein’s theory
to one-dimensional diffusion processes have not been seriously consid-
ered for a long time until a work by Kasahara ([4]) appeared in which
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an application to a limit theorem of the Darling-Kac type for additive
functionals of one-dimensional diffusions has been studied.

A main purpose of this note is to give a survey on applications of
Krein’s theory to one-dimensional generalized diffusion processes or gap
diffusions. A key in this study is an observation that a Feller’s gener-
alized second-order differential operator with a Feller’s boundary condi-
tion at a regular boundary point can be given, if the scale is suitably
normalized, by a pair of strings so that the corresponding pair of spec-
tral characteristic functions determines the associated diffusion up to a
homeomorphism of the state interval. In other words, a pair of spectral
characteristic functions plays a role of an invariant of one-dimensional
diffusion processes under a homeomorphic change of the state space.
Also, the one-to-one homeomorphic property of Krein’s correspondence
between a string and its spectral characteristic function can be used, for
example, to determine the domain of attraction in several limit theorems
for one-dimensional diffusion processes in terms of their Feller’s data.

2. Krein’s correspondence

DEFINITION 1. By a string m, we mean a right-continuous and non-
decreasing function m defined on [0, ) for some ¢ = ¢(m),0 < £ < o0,
with values in [0, 00).

Thus, m may be identified with the Radon measure dm on [0, £), so
that there is a one-to-one correspondence: m ¢ (dm, £).

REMARK 1. In this note, by a Radon measure, we always mean a
nonnegative Borel measure which is finite on every compact set.

We set m(0—) = 0 and m(z) = oo for z > £ when £ < co. Then the

function
m: [0,00) 3 z — m(z) € [0, 0]

is always right-continuous and non-decreasing. Let M be the totality of
strings and M™ = M \ {0} where 0 is the string defined by £ = 0o and
m(z) = 0. It is sometimes convenient to consider the ”infinite string”
denoted by oo and defined by ¢ = 0, or equivalently, by m(z) = oco. Let
M = MU {oo} and introduce the topology of M as follows:

DEFINITION 2. For m,,m € M, we define m, — m in M as n — oo
if m,(z) — m(z) for every z € [0,00) which is a continuity point of
[0, 00]-valued function m(z).
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As we shall see, M is compact and metrizable under this topology.
Introduce the following space of functions in A > 0:

DEFINITION 3.

H = {h()\)zc+/[0 ))\iga(df) ‘ c>0 and

(1) o : a Radon measure on [0,00) such that

1

Set H* = H \ {0} and H = H U {00} where 0 denotes the function
h(X) = 0 and oo the function A(A) = co. We introduce the topology of
H by the pointwise convergence:

DEFINITION 4. For hy, h € H, we define b, — h in H as n — oo if
hn(A) — h()\) for every A > 0.

This topology is compact metrizable. To see this, we first note that
h € H if and only if it is expressed uniquely as

_ 1+&
h“)‘/[owwrs (dg)

by some finite Radon measure on [0,00]. Indeed, p({oc}) = ¢ and
w(d€) = (1 + &) 1o(d€) on [0,00). If h,,h € H, then hy(X) — h(A)
for every A > 0 if and only if the finite Radon measures p, correspond-
ing to h, converge, as n — 00, to u corresponding to h in the Prohorov
topology. The Prohorov topology on the set of all finite Radon mea-
sures on a compact metrizable set is locally compact and metrizable
with a countable open base. Then H is locally compact and metrizable
with a countable base and hence, H as its one-point compactification, is
compact and metrizable.

For given m € M, let ¢(z,A) and 9(z, ) be the solutions of the
following integral equations on the interval z € [0, ¢):

(2) oz, A) =1+ )\/x dy ‘: (2, A)dm(z),

(3) P(z, A) —x+)\/ dy 1,[1 z, A)dm(z).
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#(z, ) and 9¥(z, A) are uniquely determined by these equations and, as
functions of A, can be extended to entire functions on the complex plane
for each fixed z € [0, £).

DEFINITION 5. To m € M, we associate a function h given by

9@
@ = [ s =i e, s

To the infinite string m = 0o, we associate () = 0. The function A thus
associated to m € M = MU {oo} is called the spectral characteristic
function of the string m.

Note that h(\) = oo if m = 0. Otherwise, it can be shown that h € H
so that the map m — h defined in Definition 5 is a map from M to H.
More precisely, we have the following key result due to M. G. Krein (cf.

[1]):

THEOREM 1. The mapping m —— h of Definition 5 defines a one-
to-one onto correspondence between M and H. Furthermore it is a
homeomorphism with respect to the topologies introduced in Definition

2 and Definition 4.

The correspondence m «— h between spaces M and H in Theorem
1 is called Krein’s correspondence. Note that M™ corresponds to H*
exactly and 0 «—— 00, oo «— 0, in this correspondence. Since H is
compact and metrizable, so is M. Furthermore, if

m(z) ¢ {dm(z),f} — h(A) = c-i—/[0 > +€0(d§)
we have o 4
0= 1Ai§)1h(,\) = c+/0_ aég),
c=sup{z : m(z) =0}, m(0)= }\ng )\hl()\)
and .
dm((0, c0)) = lm % /\h()\)
when £ = o0, (note that hm /\h()\) =o0ifl < oo) .
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Also, the following are important properties of Krein’s correspondence:

If m(z) «— h(A), then

b =z - __1
Zm(s d m(z) —
am(a) —— ah(b)) for a >0,b>0 and m™(z) V36N

h
where m~1(z) is the string defined by m~(z) := inf{u|m(u) > z}, (inf
= 00).

Feller’s data and strings

Suppose we are given, on an interval [0,b),0 < b < oo, a strictly increas-
ing continuous function s(x) such that s(0) = 0 and a Radon measure
m(dz) on [0,b). Following Feller and It6-McKean (cf. [3]), we call s(z)
and m(dz) a canonical scale and a speed measure on [0, b), respectively.
Given such a pair {s(z), m(dz)}, Feller’s generalized differential operator
4.4 s defined as in (3].

The right-boundary point b is called regular if

s(b—) +m([0,b)) < o0
When b is regular, Feller’s boundary condition is given in the form

du d du
pru(b) + Pza(b) + Psg— ‘—(b) =0
where p; > 0 and p; + po +p3s = 1.

DEFINITION 6. A pair {s(z), m(dz)} together with parameters {pi, p2, ps}
in a Feller’s boundary condition at b when b is regular is called a Feller’s
data on [0, b).

For a given Feller’s data, we can associate a string 1 € M as follows:

(1) If b is not regular, define 7 by ¢(= ¢(1h)) = s(b—) and
sy Joeremdy),  z<t
m(;v)—{ oo, >l if £<oo
where s~(z) = min{uls(u) = z}.
(2) If b is regular, define m by
f[o 1(z)] dy) z < s(b—-)
() =19 fopnm™ (dy) +B s(b-)<z<sb-)+Bi=2 .
oo, z>¢ if f<oo
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DEFINITION 7. The spectral characteristic function h corresponding
to the string 1 defined as above from a Feller’s data {s(z), m(dz)} (with
{p:} if necessary) is called the spectral characteristic function corre-
sponding to the Feller’s data.

In the following, we give several examples of Krein’s correspondence:
EXAMPLE 1. (1) For given yo = 0,09 > 0 and y; > 0,a; > 0 for
i=1,...,N, let m € M be defined by

N
dm(z) =Y by oty L= 00.
i=0

Then h € ‘H corresponding to m in Krein’s correspondence is given by
1

h(A) =
ao)\ +

n + 1
al)\+

+_
YN an A

(2) For given y; and a; as in (1), let m € M be defined by

N-1
dm(.’E) = Z ai6y0+y1+...+y‘., Z =l + ...+ YN.
=0

Then h € ‘H corresponding to m in Krein’s correspondence is given by
1

h(X) =
ao)\ +

Y+

0,1)\ + 1
R
a N_1A + —
YN
Thus, when a string is given by a discrete measure, the corresponding
spectral characteristic function is a Stieltjes continued fraction.
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EXAMPLE 2. (Bessel operator) Let m(z) = z/7!, £ = 0o for
0 <a <1 Then

1 T(l+a 1

(
AN = al—a)eT(I—a) A=
(

An essentially same statement is that, if (s(z), m(dz)) is a pair of canon-
ical scale and speed measure on [0, 00) given by

(5) s(z) = / y' Ody, m(dz) =22°"'dz, (0<é6<2),
0

then the spectral characteristic function corresponding to this Feller’s
data is given by

(6) h(A) =

wlo.

Fu 3 1

I'(3)
Note that Feller’s differential operator % . % is just the Bessel differ-

ential operator

1d2 §-1 _d_

2dz? ' 2z dz’

EXAMPLE 3. (Bessel operator with drift) The function A(A) in (6)
is a particular case of the following family of functions:

(8)
h()) =

(7) L® =

r(1-1%) 1

vyl — ——, 0<d<2, ¢2>20, 6>-1
2:T(5)  (A+co)l-2 41726

This class of functions is contained in H; () in (8) is indeed the spectral
characteristic function corresponding to the Feller’s data on [0, 00) given
by

9 sm=AywﬁﬁwwaM7wm=%“&M@ﬂ

where

(10) Psco(T) = ps(z; ) + Os(z; ).
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Here, we set generally for A > 0 and z € (0, 00),

() ez =1 (3) (m) Iy (VDa),

2 2
>
(12 ) =T (3) (“227) Iy (V),

I,(z) being the modified Bessel functions.

Note that Feller’s differential operator Edm_ . % is given by the following
differential operator which we call a Bessel differential operator with

drift:

(13) pee0 - L4, [6 -1, ps,c,e(m] d

2 dx? 2z Ps.c0(T) dz’

3. Generalized diffusion on a line corresponding to a pair of
strings

Given a pair m = (m,,m_), my € M, such that m_(0) = 0, we
define the Radon measure m(dz) on (—I_,{,) by
_ | dmy(z) on [0,¢,)
(14) m(dz) = { dm_(z) on (—¢_,0)
where dim_ is the image measure of dm_ under the reflexion z — —z. Let

E,, be the union of the support in (—£_, £, ) of m(dz) and the boundary
point —£_ or £, whichever is finite.

DEFINITION 8. By the generalized diffusion process X = (X;, P,)
corresponding to the pair m, we mean a Hunt process (a time-homogeneous
strong Markov process with cadlag and quasi-cag paths) on the E,,, with
point —£_ or £, as the trap, obtained from the Brownian motion B(t)
on R (starting at = € E,,,) by the time change:

X, = B(¢;h).
Here,

¢ = f(—e_,e+)e(t’x)m(d93), t<o_¢ Nog,
¢ 00, t>0_¢y Aoy,

¢; ' =inf{u| ¢, > t},
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£(t, z) is the sojourn time density of the process B(t) with respect to the
measure 2dz, i.e.,

1
= lim — >
{(t, ) lélir(r)l ), lg—eare(B(s))ds, t>0, z€eR

and
o, =inf{t| B(t) =a}, acR.

Since the measure m(dz) need not be everywhere positive on (—¢_, £,),
X; may jump to a neighboring point in E,, (gap diffusion) so that when
m(dz) is a discrete measure, X is a birth and death process. The process
X is transient if and only if £, A .. < o0 and, in this case,

_ztb
o+l

where ( is the first hitting time to the boundary points. ( is identified
with the life time of the process so that the boundary points may be
identified with the terminal point the process.

It is important to remark that every non-singular diffusions process
on an interval can be obtained, up to a homeomorphic change of the
state interval, as a generalized diffusion process corresponding to a pair
of strings. Consider an interval @ and let X = {X(t), P;},cq be a time-
homogeneous strong Markov process on ¢ with continuous paths up to
the life time (. We denote Q = [a,b] and Q° = (a,b) sothat Q° C Q C Q
and call a and b boundary points of Q). These points may, or may not,
belong to ). X is called regular if every z € Q° is a regular point in
Feller’s sense; i.e., Py(m;, = m,;_ = 0) = 1 where m, is the hitting time
to z and

P(lim X, =£,) =1— P,(lim X, = —£_ —_ <z <l
(m X, = £,) (lim X, ) T <ty

Mgy = limm,, m,_ =limm,.
ylr yTz

X is called conservative if P,(( = co) = 1 for all z € @ and semi-
conservative if there is no killing inside Q; i.e., P(¢ > my,e Amy_) =1
for all z € Q°.

In this note, we mainly consider a time homogeneous, regular, semi-
conservative diffusion on an interval () with the property P,(m, < co) >
0 or P;(m, < o0) > 0 for all z,y € @ and call such a diffusion a
non-singular diffusion. Suppose we are given a non-singular diffusion
X = {X(t), P.}sco on an interval Q). Since X is regular, there are
associated a canonical scale s(z) which is a strictly increasing continuous
function on @° and a speed measure m(dz) which is an everywhere
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positive Radon measure on Q°, (cf. [3]). Take a point ¢ such that
a < ¢ < b and define a pair {s,(z), m.(dz)} of the scale and measure
on [0,b — c) and another pair {s_(z), m_(dz)} on [0,c — a) by

si(z) =s(c+z)=5(c), 0z <b—c, my(dz)=m(c+dz)|ps-
and
s_(z)=s(c)—s(c—z), 0Lz <c—a, m_(dzr)=m(dz - c)|oca)

respectively. If a boundary point a or b is regular, i.e., b — ¢ is regular
with respect to the pair {s.(z),m,(dz)} or c—a is regular with respect
to the pair {s_(z),m_(dz)}, then we have a Feller’s boundary condi-
tion there associated to the process X with parameters {p; } or {p;},
(cf. [3]), so that we have two Feller’s data: {s,(z),m,(dz)} (together
with {p] } if necessary) and {s_(z),m_(dz)} (together with {p;} if nec-
essary). Conversely, by the general theory of Feller and It6-McKean,
these two Feller’s data are enough to determine the process X. Thus,
analytically, it is equivalent to give a non-singular diffusion and a pair
of Feller’s data.

Finally, let 72, and 7_ be strings corresponding to the Feller’s data
{s+(z), m(dz)} (together with {p; } if necessary) and to {s_(z), m_(dz)}
(together with {p;} if necessary), respectively. Let X = {X(¢), P,}
be the generalized diffusion process corresponding to the pair h =
(M4, m_) of strings. The following theorem is a way of rephrasing sample
paths construction, due to It6-McKean ([3]), of a non-singular diffusion
from its analytical data:

THEOREM 2.
(X)) = 5(0), Poheg £ {X (), P} _,

where Q is obtained from Q by deleting the boundary point a or b
whichever is in Q) and at which the scale s(z) is unbounded, i.e., s(a+) =
—00 or s(b—) = 0.

As for the restriction of the interval Q to @, see Remark 2,(ii) below.
In this way, we see that every non-singular diffusion can be essentially
obtained as a generalized diffusion corresponding to a pair of strings.
The pair of spectral characteristic functions corresponding to this pair
of strings (or the pair of Feller’s data) may be considered as an invariant
of non-singular diffusion X; indeed, we have the following theorem which
is essentially based on the uniqueness part of Krein’s correspondence:



Invariants of the one-dimensional diffusion processes 647

THEOREM 3. Let X and X’ be two non-singular diffusions on inter-
vals Q and (', respectively, and let (h.(A), h_())) and (h/_(X), h_())) be
pairs of spectral characteristic functions associated to them, respectively.
If there exists some constant k > 0 such that

(hs(X); ho(A)) = R(RL(A), RL(N)),
then there exists a homeomorphism H : Q — @' such that X = H™1(X").

Note that H(c) = ¢ where ¢ and ¢ are points in @° and Q" re-
spectively, with respect to which, pairs of Feller's data are defined as
above.

REMARK 2. Consider a non-singular diffusion X on an interval Q) =
[a,b).
(i) If a is a regular boundary point and Feller’s boundary condition
at a is reflecting, i.e., p; = p3 = 0, then it is essentially a generalized
diffusion corresponding to a pair of strings m = (m,,m_) with m_ =0
and m, is the string associated to the scale s (z) = s(z) — s(a) and
the measure m, (dz) = m(a+dz) on [0, b — a) together with parameters
{p{} in Feller’s boundary condition when b is regular. So X is given
essentially by a single string m, .
(ii) There is a case of X when a is not a regular boundary point but an
entrance boundary point in the sense of Feller (cf. [3]), e.g., @ = [0,00)
with the scale s'(z) = z!7% and the measure m(dz) given by (5) for § > 2.
We can construct the process starting at a so that it enters into (a,b)
immediately and can not return to a. However, for the corresponding
generalized diffusion X, the point —{_ corresponding to a is now —oo so
that it is not in the state interval of X. This suggests that there should
be some extension of Krein’s theory for strings with entrance left-end
points. This problem was studied by Kotani ([5]); its application to
theory of diffusions, however, seems to remain still open.

So far, we considered the case of diffusions. Since m(dz) in (14) need
not be everywhere positive, a generalized diffusion corresponding to a
pair of strings may have discontinuous sample functions. The following
is a typical application of such a case to the study of random walks:
Imbedding of a space-dependent random walk into a general-
ized diffusion
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Let = = {&,, P*}icz be a space-dependent and time-homogeneous
simple random walk on the one-dimensional lattice Z with one-step tran-
sition probability given by

PE(bni = §lén = 1) = pibjie1 + @051 + 1635, 1,5 € Z,
where

pi>0,¢>0, 720, pi+g+r=1
Define two sequences {s,}32, and {t,}32, by

n-1 k
(15) SO:O, Snzzr[qi/pi, n=1,2,n_
k=0 i=0
and
n-1 k

(16) to=0, ti=1, ta=1+Y [[p-i/fe-s n=23,....

k=1 i=1
Then we define m,,m_ € M by
(17)

_ Z;::O 1/pk Hi‘c:opi/Qia Sn S r<$8py, N= 0; 1) e
m(z) = { 00, T > Soo= limproo 8p) 1= 14

and

(18)
0, th=0<z<t;=1

m_(z) = Shi1/qklli1a-i/P-iy taST<to, n=12,...
0, T 2 too(= liMproo tn) 1= 2.

Let X = {X(t), P;} be the generalized diffusion process (actually a birth
and death process) corresponding to the pair m = {m,,m_} given by
(17) and (18). The state space of X is the following discrete set:
E={.. <—tnu<-th<...<—-t4 = -1<0

= $<...<8, <841 <}
Define a map ® : E — Z by ®(—t,) = —n, n = 1,2,... and ®(s,) =
n, n = 0,1,.... We define a sequence {7} of stopping times for X
inductively as follows: Take a sequence of mutually independent expo-
nential times {¢{™} which is also independent of E such that

EE™) =1/r, i€Z,n=12..., (e =coas. ifr;=0).
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Let

TW =inf{t >0 | X(t) # X(0)} and T; = ey ATV,

IfTy,---,T, are already defined, set
T = inf{t > T, | X(t) # X(T,)} and
Tos1 = Tn + €50xipy A (T = T0,).

It is easy to deduce that Ty, T —T1, ... , T, — T,-1, . .. arei.i.d. random
variables with mean 1 exponential distribution.

THEOREM 4.

{gna PiE}iEZ i {¢(X(Tﬂ))7 P@‘l(i)}iez-

4. Applications

(1) Generalized arc-sine laws

We consider a generalization of the classical arc-sine law for the ra-
tio of occupation times on the positive side for one-dimensional Brow-
nian motion and simple random walk (cf. [3], p.57 and p.40) to one-
dimensional diffusions and space-dependent simple random walks. In
order to describe possible limit random variables, we introduce the fol-
lowing

DEFINITION 9. For 0 < a < land 0 < p <1, let Y,, be a [0,1]-
valued random variable with the Stieltjes transform given by

E[ 1 ] Cp(A+ 1)+ (1 — p)ae!

_ A> 0.
A+ Y, PO+t (loppe "7

The family {Y,,,0 < a < 1,0 < p < 1} was introduced by Lamperti
([8]) and is called the Lamperti class of random variables.

If o =0, Yy, is the two valued random variable with values 0 and 1
such that

(19)

PYo,=1)=1- P, =0)=0p.
If o =1, Y}, is the constant random variable such that

P(Y1,=p) =1
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When 0 < @ < 1 and 0 < p < 1, the law of Y, , has the density f,(z),
0 < z < 1, which can be obtained easily by inverting the Stieltjes

transform:

(20)

sin am p(1 —p)z* (1~ z)*!
fan(@) = (1-p)z=~Y( )

m  p2(l —z)% + (1 — p)2z2 + 2p(1 — p)z*(1 — z)*cosam’

Hence, Y} 2,12 is arc-sine distributed, more generally,

2 T
<z)= Zsin™! <z<l.
(21) P(Yyy2p < ) —sin \/;“‘(Tg; 1) 0<z<

Barlow, Pitman and Yor [2] noticed the following remarkable expression
of Y,

l/aS
22 Yop & P e
( ) a,p pl/aSa + (1 _p)l/as(,x
where S, and S}, are independent copies of the positive normalized stable

random variable with exponent o; E(e™*%) = e™*", A > 0.
If p=0 or p =1, they are trivial in the sense that Y, o = 0,a.s. and

Y,1 = 1,a.s. In the nontrivial case of 0 < p < 1, Y, < Y,y if and only
ifa=a' and p =yp'. Also it is clear that

d
Y;:c,l—p =1- Ya,p-

Let m,,m_ € M and X = (X(t), P;)seE, be the generalized diffusion
process corresponding to the pair m = (m,,m_), (cf. Def. 8). We
assume that 0 € E, and X(0) = 0 (that is, we consider under F),
for simplicity. Consider the occupation times of X on the positive and
negative sides:

A = [ awXds, A0 = [ 1 (X(s))ds

and ask the following question: What are possible limit random variables
in law of AL(t)/t ast — oo and when the limit exists in law? An answer
is given by the following

THEOREM 5. (1) The class of possible random variables in law of
A, (t)/t ast — oo is the Lamperti class {Y,,,0 <a<1,0<p<1}.
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(2) The convergence in law

1
zA+(t) Y, t—oo

holds if (and only if when 0 < p < 1) the pair m satisfies the following
conditions:

(1) If0 < a <1, then £, ={_ = oo, my(z) and m_(z) are regularly
varying at co with exponent 1/a — 1; that is,

(23) ma(z) = 2/* 7 Ki(z),
with slowly varying functions Ki(z) at * = oo and furthermore
1/a
(24) lim X(2) _ P

dowK_(z)  (1-p)/*
(ii) If @ = 0, then either X is transient, i.e. {4 AN {_ < oo with

e— —
e P
or {, = {_ = oo and there exists a continuous increasing function

f(z) of z € (0, 00) such that f(0) > 0, limzye f(x) = 00, its inverse
f~Y(s) is slowly varying at s = oo and satisfies both

. my(zs) [0 if 0<z<1
(25) bm—iy { oo, if z>1
and
. m_(zs) [0, if 0<z<l1
(26) b G —p) { o, if z>1.

In the proof, a key role is played by a theorem due to Kasahara ([4] Th.
2, [6] Cor. to Th. 2.1) concerning a necessary and sufficient condition
on a string under which its spectral characteristic function is regularly
varying. This theorem of Kasahara is essentially based on Theorem 2
of Section 2. If we apply the imbedding result, Theorem 4, for a space-
dependent random walk = = (£,, PF), then we can deduce the following
(cf. [12]):
Let A, =Y ¢ Lig>0p. Then, as for the convergence in law of A,/n as
n — oo under P, we have the same conclusion as Theorem 4 in terms
of strings defined by (17) and (18).

A remarkable fact in Theorem 5 is that we can determine the domain
of attraction in the limit theorem in terms of strings, or equivalently, in
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terms of Feller’s data. A similar result in the case of a limit theorem of
the Darling-Kac type for occupation times of generalized diffusions has
been obtained by Kasahara [4].

(2) Time inversion and bilateral Bessel diffusion processes with
drift
We start with the following simple examples:

EXAMPLE 4. If B(t) is a BM?(1) (1-dim. Brownian motion starting

at 0), then
{2 (0)},, = oo

Indeed, the both are centered Gaussian processes with the same co-
variance s A t.

EXAMPLE 5. Let a,b € R and B(t) be a BM°(1). If
X(@t)=a+bt+ B(t) and X'(¢t)=0b+ at+ B(t),

(9, oo

This can be deduced immediately from Example 4. Being motivated
by these examples, we ask the following question: What are the classes
of non-singular diffusions X and X' on intervals Q and Q' and their
initial laws p and p', respectively, such that, for a family {Gy,t > 0} of
homeomorphisms from Q onto Q';

Gi: Q32— G(t,z) €Q,

the following invariance property under the time inversion holds?

@) {e(:x(3)) A} *ixw.m.,

This problem has been discussed in [11] for unilateral diffusions on @ =
[a,b) and Q' = [d/,b) with the left boundaries a and a’ regular and
reflecting. Examples 4 and 5 are the case of @ = @' = R, G(¢{,z) =tz
with g = ¢/ = 8y and p = 6,, ¢’ = &, respectively.

In order to discuss this problem, we introduce the following family of
non-singulardiffusion processes:

then
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DEFINITION 10. (1) (Bilateral case) Let 0 < § < 2,¢ > 0,0, >
—1,6_ > —1and 0 < p < 1. By the bilateral Bessel diffusion process with
drift, of the dimension parameter §, the drift parameter (c,8,,6_) and
the skew parameter p, and denote it by WBESD(4, ¢, 0,,6_,p), we mean
a conservative non-singular diffusion process X(t) on R determined by
the canonical scale

‘lfmy‘p‘ (y)dy z>0
28 s(z) = oV~ Paea W%, =
(28) (z) { fl fy1 5/’330 (y)dy, =<0

and the speed measure

_ 202°7 105 (a:)da: z2>0
(29) m‘d””)‘{zu p)la*102,5_ (I2l)dz, = <O.

(2) (Unilateral case) This is the extreme case of p=0and p=1. So
let 0 <6 < 2,¢>0,0 > —1. By a (unilateral) Bessel diffusion process
with drift on the positive (negative) side with the dimension parameter
0 and the drift parameter (c, 8), and denote it by BESD™(§, ¢,0) (resp.
BESD™(d,c,8)), we mean a conservative non-singular diffusion on R* =
[0, 00) (resp. on R~ = (—00,0]), with the scale and speed measure given
by

(30) s(z) = /0 ¥ 0 ps2,(y)dy, = >0,

||
(cesp.  s(z) = — /0 ¥+ 572, (w)dy, = < 0)
and

(31) m(dz) = 22°~1p} o(z)dz, >0,
(resp.  m(de) = 2al’ i op(|l)dz, @ < 0).

Furthermore, we would like to define unilateral Bessel diffusion processes
with drift for § > 2. In order for the boundary 0 to be entrance, we
assume in this case 8§ = 0. That is, we only consider BESD"(4,c,0) or
BESD™(4,¢,0) when § > 2. To be precise, by BESD*(4,¢,0) (resp.
BESD~(d,c,0)) for § > 2 and ¢ > 0, we mean a conservative non-
singular diffusion on R* = [0,00) (resp. on R~ = (—o00,0]), with the
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scale and speed measure given by

(32) s(z) = / y'S5(y; ) 2dy, >0,
1

Iz}
(resp.  s(z) = - / Y " ps(y; ) dy, = < 0)
1

and
(33) m(dz) = 2z°1ps(z; ¢)?dz, = >0,

(resp.  m(dz) = 2|z|* Yps(|z|; c)’dz, z < 0).

Cf. (10), (11) and (12) for the definition of p;.9 and @s(z; ¢). Thus, in

the unilateral case, the boundary 0 is regular and reflecting for 0 < § < 2
while non-regular and entrance if § > 2. In the latter case, a path

starting at 0 enters immediately into (0,00) (resp. (—o00,0)) and can
never come back to 0.

REMARK 3. When ¢ = 0, WBESD, (BESD*, BESD™) does not
depend on 6. (resp. 6). In this case, it is simply called a bilateral skew

Bessel process and denoted by skewBES(8,p), (resp. unilateral Bessel
process and denoted by BES™(d) or BES™(0)).

The following theorems solve our problem in a particular case of
G(t,z) = tz. First we consider the bilateral case:

THEOREM 6. Let X = (X(¢)) and X' = (X'(t)) be non-singular
diffusion on R with the initial distributions yu and p/, respectively. In
order for the following invariance under the time inversion:

(34 {x(3)] 2w

to hold, it is necessary and sufficient that the following (i), (ii) and (iii)
are satisfied:

(i)
X =bBESD(b,¢c,0,,0_,p) and X' =biBESD($,c,0.,,6",p)
with
0<6<2,¢>0,c>0,0.>-1,6,>-1,0<p< 1.
(ii) These parameters satisfy
pf,+(1—p)0_=0 and p#. +(1-p)d =0.
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(iii) The initial distributions yu and p' are given by

po= K[p(1+6)(¢+0.9)8 5 + (1 —p)(1+06)(+0_¥)6_ s,
W= K[p(l+6.)(¢+09)8 5+ (1—p)(1+0-)(¢+09)6_ 5,

where §, is the unit mass at a € R,

¢ = @s(V2cic) = p5(V26¢) =T (g) \/ngfg-l(?\/c_g),

b = U(V20c) = ps(V35 ) =T (g) V@1, soved),

K = {p(1+8)(@+0:%)+(1-pA+0)(p+0-¥)}
= {p(1+0,)(¢+0,9) + (1 - p)(A+06-)(¢ +6_9)}
= {¢+[p0:0, + (1 —p)o-0 ]y}

so that yu and i are probability measures.

In the unilateral case, we consider only the case of the interval R* =
[0, 00); the case of the interval R~ = (—o00, 0] being essentially the same.

THEOREM 7. Let X = (X(t)) and X' = (X'(t)) be non-singular
diffusions on R* = [0, 0o) with the initial distributions p and p/, respec-
tively. In order for the invariance property (34) to hold, it is necessary
and sufficient that

X = BESD*(8,¢,0) and X' = BESD"(4,¢,0)
with
§>0,¢>0, >0

and the initial distributions yu and y' are given by
M= (5\/2—0, and ,u’ = (5\/2—6.

We could not answer our question proposed above in full generality.
However, under a certain restriction on the family {G;,t > 0} of homeo-
morphisms, we can show that Theorems 6 and 7 describe essentially all
possible solutions. We consider two cases of state intervals: Q = (a,b),
Q' = (', V') (the bilateral case) and @ = [a,b), Q' = [a', V') (the unilat-
eral case). In the bilateral case, we assume that the family {G;,t > 0}
of homeomorphisms; G; : Q 3 z — G(t,z) € @, satisfies G(t,c) = ¢ for
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all t > 0, for some ¢, ¢ such that a < c< band a’ < < V. In the uni-
lateral case, it should satisfy that G(t,a) = o’ for all ¢ > 0. Under such
a restriction on the family {Gy,t > 0} of homeomorphisms, we consider
non-singular diffusions Y and Y’ on @ and @' with the initial laws v and
V', respectively, for which the following invariance property under the
time inversion holds for some family {G;,t > 0} of homeomorphisms;

Gi: Q>3- Gt,r)e Q' ;

(35) {G (t,Y G)) ,P,‘}t>0 LIY'(t), Py},oy-

THEOREM 8. The all possible class of such Y and Y' with v and v/

is given by
Y=H!YX), YY=HYX') and v=poH, V=poH
and {G,t > 0} is given by
G(t,z) = H"'(t - H(z)).

Here H and H' are homeomorphisms; H : Q — Rand H : ) - R
with H(c) = H'(¢) = 0 in the bilateral case, and H : Q — R* and
H' : @ — R* with H(a) = H'(a’) = 0 in the unilateral case. And,

X, X', u, i are exactly those given by Theorem 6 in the bilateral case,
and by Theorem 7 in the unilateral case.

For the proof in the bilateral case (and similarly for the unilateral case
with a slight modification), it is important to notice that biBESD(J, c,
0.,6_,p) is, in the context of what we have discussed before Theo-
rem 2, a non-singular diffusion process on R determined by two pairs

{s+(z),m,(dz)} and {s_(z), m-(dz)} of Feller’s data on [0, c0) given by
s+(z) = 5(z)jo00)  M(dx) = m(dx)]p0,00)
and
s-(z) = —s(=7)|peo) m-(dz) = A(dZ)[0,00)

where s(z), m(dz) are defined by (28) and (29). The pair of spectral
characteristic functions corresponding to these pairs is given by

(36) (R (A), h-(A))

r(1_g)( 1 1 )
28T(5) \pl(A+0)' -+ 80, (1-p)(A+ "t +ct720.] )
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Then the idea is to deduce from the invariance property (35) that each
of the pairs of spectral characteristic functions (h,[Y](A), h-[Y](A)) and
(hi [Y')(N), h_[Y")(X)) associated to Y and Y’, respectively, must be a
constant multiple of the pair (h,(A),h_())) defined by (36). We can
furthermore deduce from (35) again that the function A[Y]()A) defined
by

I 1 + 1
RYI() — Re[YIO)  A-Y]()
must be given in the form
h[Y](A) = const - m,

and similarly for A, [Y’], h_[Y’]. Then it is easy to deduce that, unless
¢ = 0, parameters in these spectral characteristic functions must satisfy
the condition (ii) of Theorem 6. Now appealing to Theorem 3, we can
conclude that Y and Y’ are obtained from 4iBESD’s by homeomor-
phisms H and H’ as above. Thus, we see that Krein’s correspondence
plays a crucial role in the proof that Y and Y’ should be so given as
described in Theorem 8. The converse part that such Y and Y’ really
satisfy the inversion property, equivalently, the sufficiency part of Theo-
rem 6, can be proved by using the explicit form of transition densities of
biBESD’s which can be computed under the condition (ii) in Theorem
6 of parameters. For details, cf. [13].
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