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TWO-LINK APPROXIMATION SCHEMES FOR
LINEAR LOSS NETWORKS WITHOUT CONTROLS

M. S. BEBBINGTON, P. K. POLLETT AND I. ZIEDINS

ABSTRACT. This paper is concerned with the performance evalua-
tion of loss networks. We shall review the Erlang Fized Point (EFP)
method for estimating the blocking probabilities, which is based on
an assumption that links are blocked independently. For networks
with linear structure, the behaviour of adjacent links can be highly
correlated. We shall give particular attention to recently-developed
fixed-point methods which specifically account for the dependen-
cies between neighbouring links. For the network considered here,
namely a ring network with two types of traffic, these methods pro-
duce relative errors typically 10~° of that found using the basic EFP
approximation.

1. Introduction

Ever since the work of A. K. Erlang became widely known [2], sto-
chastic models have gained prominence as effective means of predicting
the performance of telecommunications systems. For the simplest mod-
els there are explicit analytical formulae for the important measures of
performance, such as the blocking probabilities. However, these formu-
lae often cannot be computed since, even for networks of moderate size,
the number of states can be very large. Under several limiting regimes
the Erlang Fized Point (EFP) method provides a good approximation
for the blocking probabilities, but when these regimes are not operative
the method can produce relative errors of 5% or more. In many cases
this is because the key assumption of independent blocking does not
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hold. By accounting for the dependencies between neighbouring links
the basic fixed-point method can be improved.

Consider the usual stochastic model for a circuit-switching network
with fixed routing. This was introduced as a model for a telephone
network, but it also arises in the study of local area networks, multi-
processing architectures, data-base management systems, mobile/cellular
radio and broadband packet networks (see for example [3, 8, 12, 17, 20,
23]).

When the usual assumptions are in force, namely that there are no
repeated attempts, that lost calls are not held and that there is full
availability between adjacent switching nodes, then the model is very
accurate in predicting network performance. An example of a circuit-
switched network is depicted in Figure 1. If we denote by K the number
of links (circuit groups), then any route in the network can be expressed

Route-r
Arrivairate

Linkj

— Cjc
f onlinkj

Fig 1. A typical circuit-switched network
(5 nodes, 6 links and 5 routes)

as a subset of {1,2,...,K}. Let R be the set of all routes. Calls using
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route r are offered at rate v, as a Poisson stream, and use a;.(> 0) cir-
cuits from link j, the total number of circuits on link j being C;. We
assume that R indexes independent Poisson processes. Calls requesting
route r are blocked and lost if, on any link j, there are fewer than a;,
free circuits. Otherwise, the call is connected and simultaneously holds
ajr circuits on each link j for the duration of the call. For simplicity,
we shall take a;, € {0,1}. Call durations are independent and identi-
cally distributed exponential random variables with unit mean, and are
independent of the arrival processes.

Let n = (n,, r € R), where n, is the number of calls in progress
using route r, let C = (C}, j=1,...,K),andlet A= (a;r, r€R, j =
1,...,K). Then, the usual model for a circuit-switched network (see for
example [15]) is a continuous-time Markov chain (n(t), t > 0) taking
values in

S=S(C)={n€Z$ : AnSC}.
Its transition rates are easy to write down, since the only possible tran-
sitions involve either an upward or a downward jump of size 1 in one,
and only one, component of n. If ¢(n,n’) denotes the transition rate
from state n to state n’, then we have that

qg(n,n +e;) =y, ifn,n+e, €59,

g(n,n—e;)=n, ifn,n—e, €S8,
and g(n,n') = 0 otherwise; here e, is the unit vector indicating just one
call in progress on route 7; its i entry is 1 or 0 according as i = r or
i # r. It can be shown (see for example [3]) that the unique equilibrium
distribution 7 = (7(n), n € S) is given by

m(n) =& H “one S,

nyl’
reR T

o=3(C)= Y H'f:.

nesS(CyreR T
The stationary probability that a route-r call is blocked is then given by
®(C - Ae,)
o(C)
However, although we have an explicit expression for the blocking proba-~
bility in terms of ®, the latter can’t (usually) be computed in polynomial

where

1-—



542 M. S. Bebbington, P. K. Pollett and I. Ziedins

time (see for example {14]). Thus, for networks with even moderate ca-
pacity, one is forced to use alternative methods.

The remainder of this paper is organized as follows. In Section 2
we review the basic EFP approximation, citing both conditions under
which it is accurate, and situations where it is known to perform badly.
Section 3 contains a description of the network which we shall use to
illustrate our methods: a symmetric ring network with two types of
traffic. By calculating the exact blocking probabilities using an iterative
technique, we are able to assess the accuracy of the basic EFP method.
The correlation between neighbouring links is also illustrated. Finally,
in Section 4, we look at some two-link approximation schemes which
take into account this behaviour. These methods produce relative errors
typically 1075 of that found using the basic EFP approximation.

2. The EFP approximation

Arguably the most important approximation technique is the EFP
method. It is widely used (see [13, 16, 18, 26, 27, 28]) and has received
a great deal of attention in recent times, with a variety of associated
theoretical issues having been settled (see [13, 15]). Kelly [13] proved
that, when a;, € {0,1}, there is a unique vector (B, ..., Bk) € [0,1]¥
satisfying

(1) Bj = E(p.’i,Cj))

(2) pi=(1-B)"Y apn(l-L),
fory=1,...,K, and

(3) L =1-]JJa-B)*, reRr,
where

-1
I/C c "
E(,C)= 5 <2%F .
E(v,C) is Erlang’s Formula for the loss probability on a single link with
C circuits and Poisson traffic offered at rate v. The EFP approximation
is obtained by using B; to estimate the probability that link j is full,
and L, to estimate the route-r blocking probability.
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The rationale for the EFP approximation is one of independent block-
ing. If links along route 7 were blocked independently (they are clearly
not) and if B; were the link-j blocking probability, then L, would be
the route-r blocking probability:

L =1-JJa-B)=1-]]( - By)*.

i€r %

Carrying this further, the traffic offered to link j would be Poisson (at
rate p;, say) and the carried traffic (that which is accepted) on link j
would be

> a4 (1- L) (= (1 - B))p;) -

The approximation therefore stipulates that the link blocking probabil-
ities (B, ..., Bk) should be consistent with this level of carried traf-

fic. On combining (1), (2) and (3) we obtain a set of equations for
(Bl, ey B}()I

Bj = E((Zajrl/r H (1 —B,‘)) y CJ) .
r ier—{s}

The existence of the Erlang Fixed Point, namely a fixed point of these
equations, is easy to prove using the Brouwer fized point theorem; they
define a continuous mapping from a compact convex set [0, 1]¥ into it-
self. The uniqueness is considerably more difficult to prove [13]. We
note that for more complex systems there may be more than one fixed
point. For example, networks with random alternative routing can ex-
hibit bistability; the system fluctuates between a “low-blocking state”,
where calls are accepted readily, and a “high-blocking state”, where the
likelihood of a call being accepted can be quite low (see for example
[7, 24, 25]).

The EFP approximation performs well under a variety of circum-
stances, despite the fact that the occupancies of neighbouring links may
be highly dependent. Several limit theorems exist which help to explain
this, and there are two regimes in particular under which the EFP ap-
proximation is known to be exact. The first is one in which the topology
of the network is held fixed, while capacities and arrival rates at the links
become large [13]; this has become known as the Kelly limiting regime,
or (somewhat misleadingly) as the heavy traffic limit. Kelly considered
a sequence of networks indexed by an arbitrary parameter N, with the
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capacities and arrival rates indexed accordingly:
c™ = (C(N) j=1,...,K) and v™ =M reRr).
He proved that if, as N — oo,

1
—]%T—C(N) — C and NU(N) —v,

then
M =1-TJa-BMe, rer,

where, here, (BfN), ey B%N)) is the Erlang Fixed Point determined by (1)
and (2) using the values ™) and C™), converges to the route-r loss
probability as N — oo. This result alone may perhaps explain why the
EFP method has been used so successfully by practitioners in a wide va-
riety of circumstances, for, roughly speaking, it says that, provided the
arrival rates and capacities are large, the method is bound to perform
well.

Under the second limiting regime, called diverse routing, the number
of links, and the number of routes which use those links, become large,
while the capacities are held fixed and the arrival rates on multi-link
routes become small. Thus for a sequence of networks, now indexed by
K, we allow the routing matrix and arrival rates to depend on K,

A(K)_((K), TERajZ]-,'--vK)7 V(K)z(yﬁK)”reR)’
and suppose that

(4) Zagf)ag) vK) 0, hk=1,...,K,
and
(5) Za(m (K) 5 v; >0, j=1,...,K.

With this formulatlon [9], the traffic along link j will be of order v;, but
that which is common to any two links becomes small as K gets large.
There are no general results under (4) and (5). Rather, there are many
results for a variety of specific systems. These include star networks and
fully-connected networks with alternate routing [10, 11, 19, 27, 30].

To illustrate the effect of diverse routing we shall consider a symmetric
star network. This consists of a collection of K outer nodes, which
communicate via a single central node (see Figure 2).
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Link1
Link2
Link3

C 9

—

Node1
Node2
Node3

Fig 2. A typical symmetric star network
(K = 6 outer nodes and 15 routes)

Take R to be all those routes consisting of a pair of links. Fix v > 0
and take v, = v/(K — 1) for all r € R, and fix C; = C for all links
j=1,...,K. Whitt [27], and Ziedins and Kelly [30] proved that if L)
is the common route loss probability, then LX) — L, as K — oo, where
L =1-(1- B)?, and B, the Erlang Fixed Point (the same for all links),
is the unique solution to B = E(v(1 — B),C).

If neither of the above regimes is operative, the EFP method may
not perform as well: in particular, in highly linear networks and/or net-
works with low capacities. Further, adding controls to the network may
cause the method to perform badly under otherwise favourable regimes.
A particularly useful control is trunk reservation. Here, traffic streams
are assigned priorities and calls are accepted only if the occupancies of
links along their route are below a given threshold, the level of which
depends on the type of call. This widely used control mechanism is
typically very robust to fluctuations in arrival rate and has the added
advantage of eliminating pathological behaviour such as bistability [7].
With such a control operating in a network of reasonable size, the equi-
librium distribution will no longer have a product form, as it does for
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the corresponding uncontrolled network. We can then no longer afford
to ignore dependencies. For an excellent review of the theory of loss
networks, and in particular the basic EFP method, see Kelly [15].

We shall now focus attention on simple, highly linear networks, since
here the EFP approximation is expected to perform relatively poorly.

3. A symmetric ring network

Consider a loss network with K links forming a loop, and each link
having the same capacity C. Such a network is depicted in Figures 3
and 4. There are two types of traffic: 1-link routes (type-1 traffic}) and
2-link routes comprising pairs of adjacent links (type-2 traffic). Type-t
traffic is offered at rate v, on each type-t route.

Fig 3. A ring network (6 nodes)

If L, is the EFP approximation for the loss probability of type-t calls,
then it is easy to show that

Ly=B and L,=1-(1-B)?
where the Erlang Fixed Point B is the unique solution to

B = E(v; + 21,(1 - B),C),
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Two
Rate2

Fig 4. One- and two-link traffic using a given link

where recall that E(v, C) is Erlang’s Formula. Figure 5 shows the EFP
approximation for the blocking probability of type-1 calls in a network
with C =10, K =10 and v; = vp(=v).

In order to assess the accuracy of the EFP approximation, as well
as the improved methods described below, we shall need to evaluate
the exact blocking probabilities. This will be done using a recursive
technique; related methods are discussed by Ziedins and Kelly [30], and
Bean and Stewart [1]. The state space for the ring network is given by

S’K={n:n,~+n,-_1,i+ni,,~+1 < C,’i=1,...,K},

where, in a convenient notation, route {K, 1} is denoted by {K, K +1};
since we shall be varying K, it will be necessary to make any dependence
on K explicit in our notation. The equilibrium distribution is given by
~ Vlz,- ni 1/22‘ N i+l

7rK(n)=<I> L

—_—eee . m €S
K ) K>
IT; nitniip!

where
Vlzi ni 1/22" N4l

T 1
s IL il niiga!

is the normalizing constant for the network with K links.

Now consider a line network consisting of a series of K links. This
is obtained if the ring is disconnected at one node. In a similar fashion
we define the normalizing constant ¥g for this network. We also define
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Fig 5. EFP approximation for the blocking probability
of type-1 calls (C =10, K = 10, v; = v3 = arrival rate)

\I!g)") to be the normalizing constant for the line network with C; = 1,

Cy=C, for1 <k < K, and Ck = j. Note that \I/‘,S’C’ = Ug. Note also
that ¥ = W% Then, the ¥ satisfy the following recursion:

6i) o [ RV (g
O =D |2 e Ve

B=0 La=0
with
s min($,5) e
iJ) _ 1
W= ) op
o=l
oy = 1,

This recursion is obtained by considering the number: of one-link and
two-link calls on link 1. Consider the contribution to the normalizing
constant made by some fixed configuration of calls. Suppose that this
configuration has nj, = §, where 8 must lie between 0 and ¢ inclusive.
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Then we must have n; < 8 — ¢. Thus, the contribution from these two
routes for this particular configuration is exactly

ny B
V"V

We now consider the remaining routes; they use links {2,..., K} and
form a (K — 1)-link network. Since there are § calls on route {1,2},
link 2 only has C — § free circuits, and so the contribution from the
remaining routes is W{¢"2%),

Let us return to the ring network. An expression for ®x in terms of
the Wk is obtained as follows. Consider links K and 1. By conditioning
on ngi, we can break the ring network into a line network, and write

c nK1
dp = Yy \I,(C—nkxyc—nkl)
K= 9% )
< MKl
nx1=0

Note that links K and 1 have been chosen as the reference links here, but
of course the recursion would be the same if any other pair of adjacent
links had been chosen.

The blocking probabilities can now be written in terms of the normal-
izing constants. To do this, we introduce some further notation. Let <I>(,?
denote the normalizing constant for the ring network in which all the
links have capacity C, except for one link, which has capacity <. Simi-
larly, let @ﬁ?’ ) be the normalizing constant for the ring network in which
all links, except two, have capacity C; the exceptions have capacities ¢
and 7, and are adjacent. Then, the probability that a one-link call is
accepted (which is also the probability that a link has free capacity) is
given by

@l
Oy
and the probability that a two-link call is accepted is given by
(I)(I?—x,c-x)
bk ’

where, just as for @, we can write

Cc-1 I/nKl

(I)(I?MI) _ § : 2 \Il(KC-nKuC—l—nKl)
!
ng1=0 )
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and
C-1  nii

K
q)(C—l,C—l)_ Z Vy \I,(I?—1-nm,c-1—nm)
K - ] .

These recursions are easily implemented to obtain the exact blocking
probabilities numerically.

With a view to comparing the EFP approximation with the exact
blocking probabilities, let us focus our attention on type-1 calls. Figure 6
shows the relative error in using the EFP approximation in a network
with C =10, K = 10 and v, = vp(= v). Notice that the exact blocking

0.03

0.02

relative error
0.01

0.0

-0.01

arrival rate

Fig 6. Relative error in the EFP approximation
for the blocking probability of type-1 calls
(C =10, K =10, 11 = vy = arrival rate)

probabilities are overestimated for small values of the arrival rate v and
underestimated for larger values, and, that the accuracy improves as the
arrival rate becomes very large. An intriguing feature of Figure 6 is that
the approximation is precise (and also most sensitive) near the point of
“critical loading”, namely when v, + 2v, = C; for the parameter values
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used, this is when v = 10/3, a point just before the graph crosses the
Z-axis.

To illustrate why we might expect the EFP approximation not to
perform as well in the present context, we shall assess the dependence
between two adjacent links in the ring network. Figure 7 shows the

correlation
0.04 005 0.06

0.03

0.02

0.01

0.0

o} 5 10 15
arrival rate

Fig 7. Correlation of spare capacity on adjacent links
(C =10, K =10, 11 = vy = arrival rate)

correlation between links 1 and 2 for the network with C =10, K = 10
and v; = vp(= v); to be precise, we have plotted

Corr (I{nK1+n1+n12<C}7 I{n12+n2+n23<C})

against the arrival rate v. Notice that the correlation is greatest at values
of the arrival rate near where the EFP approximation is least accurate.
Notice also that, as the arrival rate becomes large, both the correlation
and the relative error in the EFP approximation tend to 0.
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4. Two-link approximation schemes

We can estimate the blocking probabilities more accurately by consid-
ering subnetworks of the original network, thus specifically accounting
for the dependencies between adjacent links. Take links 1 and 2 as refer-
ence links and consider the subnetwork depicted in Figure 8. We identify

Twolinksubnetwork

m_12=n_12

m_t=n_1+n_K1 m_2=n_2+n_23

O O

Fig 8. Definition of m;, ms and ms2
for the symmetric ring network

three routes: {1}, {2} and {1,2}. If m, denotes the number of calls on
route 7, then m; is the number of calls occupying capacity on link 1 but
not on link 2, that is m; = n, 4+ ng,, my is the number occupying capac-
ity on link 2 but not on link 1, that is ms = ng + ngs, and, mia(= n12)
is the number of calls occupying capacity on both links.

Our first approximation (Approximation I) is obtained by adapting
the method of Pallant [21]. In Pallant’s method, the network is decom-
posed into independent subnetworks and the stationary distribution is
evaluated for each. For example, if we take our subnetwork to be the
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one depicted in Figure 8, then its state space will be
S = {(ml,mg,mlz) . my -+ mig S C,Z = 1,2}
and its stationary distribution will be

(1/1 + Vg(l _ B))m1+m21/;7112
my! ma! myy!

m(m) = o!

bl

where ® is a normalizing constant. We then estimate B, the probability
that a link adjacent to the two-link subnetwork is fully occupied, using
the subnetwork itself; set

B = Z 7(my, Mo, M12)

m:mi1+mi=C
C C-mig

Z Z C miz, M2, m12)

mi2=0 mo=0
These expressions are used iteratively to determine a fixed point B, and
we then set L; = B and
c
Ly, =2L, - Z 7(C — M2, C — myz, my2).
miz2=0

Our second, and more accurate, approximation (Approximation II)
uses additional knowledge of the state of a given link in estimating the
probability that the adjacent link is full. We use state-dependent arrival
rates, p, = 1 +1(l —by), n € {0,1,...,C — 1}, where b, is the
probability that link K is fully occupied, conditional on m; = n (b, is
also the probability that link 3 is fully occupied, conditional on my = n),

so that . .
m m
) (I)—l ;n;z (Hn10 p”) (Hn 20 Pn)
mllmgl m12. )

Once b, is estimated and n determined, we set L; and L, as for Ap-
proximation I. An estimate of b, is found by assuming that b, does not
depend on mys. Forn=0,...,C — 1, we set

S _op(n—m,C —m,m)

Zm—OZr 0 pn—mrm)

VI“V;KI (ITZ;I‘(’)_1 ps) .

Tll! 'n,Kl! mK!

m(m

by, =

where

P(Tll, mg, nm)
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The form of p(n,, mg,nk1) can be explained with reference to Figure 8
as an invariant measure (an unnormalized equilibrium distribution) of
the two-link subnetwork comprising links K and 1 of that diagram, with
mg = Ng-1k + Nk; by is then calculated from this distribution by
identifying the configurations with m;(= n; + nk1) = n, and those that
also have link K full. The dependence of b, on m,s is due to the cyclic
nature of the network, but is expected to be slight for large networks.

This approximation is exact for the infinite line network, as shown
by Zachary [29] for an equivalent network with »; = 0 (that is, no one-
link traffic). Our expression for b, is the same as that obtained in his
paper for the infinite line network, although written in a different form.
Kelly [12] also considers an equivalent system with no one-link traffic.
State-dependent arrival rates such as we have here are also discussed by
Pallant and Taylor [22] (see also [4, 5, 6]).

Figures 9 and 10 show the relative error in using each of the three
approximations to estimate the blocking probability of type-1 and type-
2 calls, respectively, in a network with C' = 10, K = 10 and 1, =
vo(= v). Notice that, while Approximation I gives some improvement in
accuracy over the EFP approximation, the improvement obtained using
Approximation II is considerable. Indeed, the maximum relative error
for Approximation II is of order 10~ for both types of traffic.

We are presently working on extending our methods to deal with
trunk reservation and networks with a more general topology.
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