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NODAL SOLUTIONS OF NONLINEAR ELLIPTIC
EQUATIONS IN ANNULAR DOMAINS

SOON YEUN JANG! AND DAE HYEON PAnk?

ABSTRACT. We investigate the existence of radial nodal solutions
of the elliptic equation Au + h(|z|)f(u) = 0, in annular domains.
It is proved that for each integer £ > 1, there exist at least one
radially symmetric solution which has exactly k nodes.

1. Introduction

In this paper we consider the existence of radial solutions, which
have exactly k-nodes for any given integer k, of the equation

Au+ h(lz|)f(u) =0 in Q(a,b),

(1.1) u=20 on 09,

where Q(a,b) = {x € R*| a < |z] < b},n > 2 and the functions f and
h satisfy :

(A0) h e CY(0,00)), h(r) >0 for >0
(A1) feC'(R), u-f(u) 20

(A2) lim f(u) = 00

u—=>00 U

(A3) lim 1w _y

u—0 U
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This model was studied by several authors (see e.g. [1]~[8]). The
existence of positive solutions of (1.1) with various nonlinearities was
studied by Bandle, Coffman and Marcus [1], Coffman [2], Garazier (3],
Lin [6], and Ni and Nussbaum [7]. Also the uniqueness of solutions of
this model was studied by Kwong and Zhang {5] and Ni and Nussbaum
[7].

Our paper is motivated by the recent work of Lin [6] who proved the
existence of positive solutions of (1.1) on an annulus. We are interested
in the existence of solutions of (1.1) which change sign. We are going
to show that, for each integer &k > 0, there exists a radial solution of
(1.1) which changes sign exactly k times. The method used here is
the backward shooting method combined with the Sturm comparision
theorem after a suitable change of variables.

Our main result is stated as follows :

THEOREM. For each positive integer k, (1.1) has at least one radial
solution which has exactly k-nodes.
2. Proof of Theorem

Since we are interested in a radial solution v = u(r), we shall write
(1.1) in the form

(2.0) o+ P2 h)f@) =0 i (a,b).
Thus, for n > 3, in terms of variables
s={(n—-2r"D}1 and wu(s) = u(r)

(2.0) can be rewritten as

(2.1) u’(s) + p(s)f(u(s)) =0 in (s4,5%),
where

2n — 2
n—2"

p(s) = {(n — 2)s} *h((n—2)s"72), k=
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se={(n -2}, 5" ={(n-2)a""D},
As for n = 2, in terms of variables
1
§=35— loga+logr and wu(s) = u(r),
Eq. (2.0) can also be written as (2.1) with

p(s) — a2e2s—1h(aes—1/2),
s—l and s"‘—1 loga + logb
* 2) - 2 g g *

Using backward shooting method, we consider the family of solu-
tions of the initial value problem

u”’(s) + p(s)f(u(s)) =0, for s < s*,

(22) u(s) =0, w(s") = —v,

where v > 0 is the shooting parameter.

Here s* > 0 will be kept fixed throughout the paper.

For every 4 > 0, the problem (2.2) has a unique solution u(-) =
u(-,7) with the maximal domain of definition (s(7), s*).

It is easy to check that (2.2) is equivalent to the integral equation

>

(2.3) u(s) =~(s*"—3s) —/ (t—s)p(t)f(u(t))dt, for s<s*
and the solution « also satisfies

(2.4) u(s) =u(®) +v'(5)(s —3) + / s(t — 8)p(t) f(u(t))dt,

)

for s and 5 € (s(v),s*).
From (2.3), if u is positive in some interval (e, s*) with o > 0, then

(2.5) u(s) <v(s*—s) in (a,s%).
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If u have k zeros in (s(v), s*), we set

s1(v) = inf{s; [ u(s,7) >0 in (51,5},
s2(7) = inf{sz < s1 | u(s,7) <0 in (sq,s1)},

se(v) = inf{sk < sp—1 | (=1)*u(s,7) >0 in (sk,sk-1)}

By standard results in ordinary differential equations, the function
(5,7) — u(s,v) and (s,7v) — u/(s,7) are continuously differentiable in
the set

{(,7) |¥>0 and se(s(y),s")}.

Since u'(s;(7),v) # 0,i = 1,2,-- -k, by the implicit function theorem,
the sets

I ={7v>0]s1(y) >0},

Iy ={y>0]s2(y) > 0},

I ={y>0] sk(y) > 0}

are open and s;(-) € CY([;), i = 1,2,---k. Clearly I; C I;, s;(7) <
si(y), forbe I, j > i.
Consider the sets

J1={y> 0] v(r,7) =0 for some 7 € (0,s*),
and u(s,vy) > 0in (1,s*)},
Jo = {y> 0| u/(r,7) = 0 for some 7 € (0,51(7)),
and u(s,7) < 0 in (7,s1(7))},

Jk = {7 >0 | u(7,7) = 0 for some 7 € (0,5£_1(7)),
and (—1)*u(s,7) > 0 in (7, sk-1(Y)}-
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If v € J; and ¥/(7,7) = 0, then

(2.6) F(u(r, 7)) #0.
For, if f(u(7,v)) = 0, then the initial value problem

V(5) + pls) F(0(s)) = 0 in ( 54-1(),
v(T) = u(r,7), V(1) =0

has a solution v(s) = constant = u(7,~) for any s € (0, s*). Therefore,
the uniqueness of initial value problem of O. D. E. implies u(s,y) =
u(r,) for any s € (0, s*), a contradiction. By (Al) and (2.6), if vy € J;
and u'(7;,7) = 0 for some 7; € (0, s;—1(7)), then for ¢ odd

u,(s”Y) <0 forse (Ti,si—1(7)),

u'(s,7) >0 for s € (3(7),7)
and if ¢ is even

u,('s)')') >0 forse (Tiasi—l(’Y))’
u/'(s,7) <0 for s € (3(v),7),

where 3(v) = s;(v) if v € I, 3(y) = 0 if v ¢ I,. Therefore, we shall
denote this unique 7; by 7;(y) which is also the maximum (or minimum)
point of u(-,v) in (3(v), si-1(7)). It can be verified that J; are open
sets and 7;(-) € CO(J;).

LEMMA 2.1. Assume that the conditions (A0), (A1) and (A3) are
satisfied. Suppose that for some i € N,

}grgo Ti(y) = s*,

i 0o, ift is odd ,
’Ygxgou(Ti(’Y):’)’) T | —oo, ifi is even
and

lim s;(y) = s™.
y—00

Then

00, ifi is odd ,
27) tm o (as()v) = {

—oo0, if1 is even .
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Proof. If not, there exist a constant M > 0 and a sequence 7 — 00
such that (—1)""1u/(s;(vk), %) < M. By (2.6)

0 < (=1)"*u(ri(w)) = (1) {ulsi(w)) + u'(si(ve)) (7 (k) — si(7x))

7i(1x)
* / (t — 7i(ye))p(t) f (u(t))dt}

(k)
= (1)1 (3 () (s (v) — si(k))

. Ti(Yk)
— (-1 / (ra(k) — £)p(t) F(u(t))dt

i(vk)
< M(7i(vi) — si(vx)),s

since (—1)#*1 [T (r;(31) — £)p(t) f (u(t))dt > 0. By the assumption,

(7i(vk) — si(7k)) — 0 as k — oo, which is impossible. O

LEMMA 2.2. Assume that the conditions (A0), (A1) and (A2) are

satisfied. Then 7;(v),i = 1,.-- and s;(v),i = 1,-+. are well defined
when +y is sufficiently large and

(28) "/llrngo s'i('Y) =3s 1=1,---,

(2.9) lim (y)=s" i=1,---,
Y—o0

210 ) oo, ifi is odd ,

(2.10) 7313011(7',-(7),7) N {—oo, if i is even .

Proof. By induction, lim, ;e T1(y) = s*,lim, o u(T1(7),7) = o0
and lim,_, o s1(7y) = s*, by lemma 2.1 and lemma 2.2 of [6].
Assume that

lim 7;(y) = s,
~—+00
lim si(7) = <",

y o0, if 7 is odd )
7Lr{.1ou(Ti(’Y),’Y) = {_oo, if 7 is even .
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We must show that

(2.11) (i) ”’151010 Tiv1(y) = s*,
(2.12) (i) lm sipi(y) =57
5 N —o0, if ¢ is odd
(2.13) (it »1—»1{.10 ulrit1(7),7) = { 0o, if 7 is even .

(i) If not, there exist 79 € (0, s*) and a sequence v, — oo such that
Tir1(vx) < 79 for all k.

Let 5= I‘%s— Then, by induction hypothesis, for every sufficiently
large k, s;(vx) > 7o and
(2.14) (=1)%u(s,m) > 0
(—1)*u'(s,7%) <0 for s € (79,3).

We now claim that

(2.15) lim sup(—1)*u(3, 1) = 0.
k—o0

Suppose that this is not the case. Then there exists a constant
M > 0 such that (—1)*u(3,vx) < M for all k. Now, by (2.4) and
lemma 2.1,

M > (-1)*u(3, %)
= (=1)"{u(si (), k) + v/ (5:(7), &) (3 — 5i(7x))

+ [ T (t-9)plt) flult)di}

. i(Vk)
= (=1)" "/ (53 (k) 1) (55 (&) ~ 3)

. fsi()
(-1 / (t — 3)p(t) £ (u(t))dt
(2.16)

> (—1) " (sime), ) E D)

3 -C for some constant C.
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By Lemma 2.1, the right side of (2.16) goes to co. It is a contradic-
tion. Thus (2.15) holds. By choosing a subsequence of v if necessary,
Wwe may assume,

(2.17) Jim (=1)*u(3, ) = oo

By (AO0), there is a subinterval (¢, 8) C (79,3) such that p(s) > pg >
0 in (o, 3). Set

Mk=inf{f£z‘(( ’7’;)) | s &(a,B)}-

Then
M, >nf{ )|| | > (—=1)*u(3, )}

By (2.17) and (A2),

(2.18) lim M, =

k—o00

By (2.2), ux = u(-, ) satisfies

() + p(s) LDy () =0 in (0,8,

ui(s)
where
(219) o) DD > by i ).
u(s,vk)

Now, let vx be a solution of
v" + poMrv =0 in (a,f).

By (2.18) , vx has at least two zeros in (a,3) when k is sufficiently
large. By (2.19) and Sturm Comparison Theorem, u; has at least one
zero in (a, §). Because of (2.14), this is impossible. Hence (i) holds.

Now, let’s show (ii). If it is false, there exist a point so € (0, s*) and
a sequence v such that yx — oo with s;41(v&) < sp for all k, and
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(2200 |
(—1)'u(s,7%) >0 and (—1)*u'(s,7) 20 in (so,Tit1(7))-

Set 5§ = fﬂi2'i By (i), we may assume § < 7;41(vx) for sufficiently
large k. We claim that

(2.21) lim sup(—1)*u(3, 7x) < oo.

k— o0

Otherwise, there exists a subsequence <y — oo such that
lim (—1)*u(3,7%) = co.
Y—00

Similar to (i), by Sturm Comparison Theorem, ux = u(-,vx) has ze-
ros in (3, Ts4+1(7x)) when k is sufficiently large, which is impossible by
(2.20). Hence (2.21) holds. By (2.4)

(—1)iu(§, 7k)
= (1) {ulsilm), ) + 4 (s: )y )5 — ()
+ [ e-soruo)n

i (Vk)
= (=1)%' (85 (&), 1) (3 — si( )

85 (k)
(v [ - Do)

8

2 (—1)i+1ul(3i(7k),')’k)(si(')'k) -3 -C

By Lemma 2.1. and (2.21), it is impossible. Hence (ii) is true.
(iii) Suppose it does not hold. Then there exist a constant M > 0
and a sequence 7y, — 00 such that

(2.22) (=D u(rips (), ve) < M for all k.

Set N
F(u) = /0 f(s)ds
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and define
V(s)=V(s,y) = %[’u'(s)]2 + p(s)F (u(s)).

Since
V/(s) = w'(s)u”(s) + p(s) f (u(s))u'(s) + p(s)F(u(s))
= p'(s)F(u(s)),

3 (k)

V(si(vx)) = V(Tit1(7)) +/ o' (t)F (u(t))dt.

Ti+1 (%)

Therefore, we have
S0 (DI + plos () Flu(si()
= S0 i R + plriea () P ()

8; (k)
+ / ™ O Fu(t))dt,

i+1('7k)

1
3 [ (si(m)))* = p(7i1 (Ye)) F (w(Ti1 (18))
8i (k)
(2.23) + / o () F(u(t))dt.
Ti+1 (k)
(2.22) implies that the right side of (2.23) is bounded. By lemma 2.1.,
it is impossible. Therefore (iii) holds. O

LEMMA 2.3. Assume that the conditions (A0), (Al) and (A3) are
satisfied. Then we have

(i) if (0,v1) C J1 for some v, > 0,
(2.24) then lim 7(v) =0.
¥—0

(ii) if (0,m1) c Iy for some v, >0,
(2.25) then ‘}1_% s1(y) =0.
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Proof. See [6]. O

LEMMA 2.4. Assume that the conditions (A0), (Al), (A2) and (A3)
are satisfied. Then we have

(i) for any connected component (¥;1,%;2) of I,
(2.26) lim s;(y)=0 ¢i=1,2,---.

=T
(ii) for any connected component (;1,%;2) of Ji,

(2.27) lim 7;(v)=0 ¢=1,2,---.
T=TH

Proof. (i) Let (¥;;,72) be a connected component of I; (¢ = 1,2,---).
Either %;; = 0 or 7;; > 0. If ;; = 0, by lemma 2.3. (ii), lim-y—ﬁjq s1(v)
= 0. Since I; C I and s;(y) > s;(7) foreachz = 2,3, - - -, (2.26) follows
from (2.25).

If 7;; > 0 and suppose that this is not the case, there exist a point

s; > 0 and a sequence ~y;x — 7,;; with s;(vix) — si, £=1,2,---. Then

1

u(s4,7;1) = ’}1_1}}/_ u(si(vik),vik) = 0
il

i.e. %, € I, which is a contradiction to the fact that (7;;,7;,) is a
connected component of I;.

(ii) Next, let (¥;1,7;2) be a connected component of J;, (i =1,2,---).
If 4,; = 0, the result follows from lemma 2.3. If %; > 0 and
Hm o, Ti () # 0, then there exist a 7; > 0 and a sequence v,z — ;1
with 7; (k) — 7i as k — oo. Since

(13, %;1) = Hm u'(7i(vik), yir) = 0
k—o0
i.e. 7;, € I;, which is a contradiction. O

Now, we prove the main Theorem.

THOREM 2.5. Assume that the conditions (A0), (A1), (A2) and
(A3) are satisfied. Then for each integer k € N, (1.1) has at least
one nodal solution which has exactly k nodes for all a,b such that
O0<a<b<ox.
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Proof. Fix k € N. By lemma 2.2, I+ # ¢ and there exists ¥ > 0

such that (¥,00) C Ix+1. lemma 2.4 implies

Hm sp41(7) =0.
Y=Y

Hence for any s, < s*, there exist v* > 7 such that si1(7*) = s..
Since s;(y) > sg4+1(7) for 0 < i < k, there exists a nodal solution which

have nodes
Sx < 8K(7") < sk—1(Y) < --- < s1(77) < 8. 0
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