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HIGHER EIGENVALUE ESTIMATE ON MANIFOLD

BanG Ok KiMm AND ROBERT GULLIVER

ABSTRACT. In this paper we will estimate the lower bound of k-th
Dirichlet eigenvalue Ax of Laplace equation on bounded domain in
sphere.

1. Introduction

Let M be an n-dimensional compact Riemannian manifold. In terms
of local coordinate (z!,z?,---,z"), the metric can be expressed as
ds? = Zijl 9i;dz*dz? and the Laplacian operator is defined by A =
% i1 %(ﬂgij s2:). We consider the Laplace equation

(1) Au=-du in M
u=0 on OM.

It is well known that the set of eigenvalues consists of a sequence 0 <
A1 £ A2 < --- 1 400 and each associated eigenspace is finite dimensional.
Eigenspace belonging to distinct eigenvalues are orthogonal in L?(M),
and L?(M) is the direct sum of all the eigenspaces. Furthermore, each
eigenfunction is C* on M. One seeks information about the eigenvalues
and the eigenfunctions of the Laplacian in terms of geometrical data. It
turns out that lower bounds are more interesting from both the mathe-
matical and physical points of view. We will consider the estimate of k-th
Dirichlet eigenvalue of Laplace equation. In case of Dirichlet problem
for bounded domain €2 in R™, H.-Weyl [4] proved in 1912 the asymptotic
formula A\x ~ Cn(é)%, k — oo, where V = Volume of(?), C, =
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((%)2(,;)%
Wp-1)"
[3] conjectured that A\x < Cn(g)% for all k. In the case n = 2, Polya
proved that the conjecture holds for some special planar domains. In
1980, E. Lieb (1] proved that there exists a constant C,, < Cy, such that
Mk > Cn(£)=. In 1983, Li-Yau [2] proved that Ay > ;25Cn(&)%. The
purpose of this paper is to estimate the lower bound of k-th Dirichlet
eigenvalue Ax on bounded domain in S™(r).

, wn—1 = Area(S™"!). Based on this formula, in 1960, Polya

2. Main theorem

In [2], Li-Yau used Fourier transform to estimate the lower bound of
Ak on bounded domain in R™. Let M be an n-dimensional compact Rie-
mannian manifold embedded to R®. Taking the tubular neighborhood
of M in R4, we tried the method of Li-Yau [2].

LEMMA 1. [5] Given f : R*"*! — R such that 0 £ f < M, if
Jgnt1 f(2)|2|2dz £ M, where My, M, are constants, then

Wn 2 n41 n+3 n+1l
< n n n
Js 7182 (a5 T i) B (2 8

LEMMA 2. Let M be an n-dimensional compact Riemannian manifold
and embedded to R%. Let {n;};=1,2, ... 4—n be the orthonormal basis of
(TM)t in R%. Let B.(M) = {Z € R4YZ = X +Y,X € M,Y =
Z?;f £in;} be the tubular neighborhood of M in R®. Then it holds

that
/ dv
Be(M)

= / (1—=X1) - (1= Ap)duldu? - - - du™detde? . .. ded—,
Ux B (Rd-7)

PrROOF. Let z : U — M be a coordinate chart such that z(u) =
z(ul, -+ ,u") = (z,22,--- ,2%). We define C® —map & : U x
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BE(R’/“”) - BS(A[) by

d—n

®(u, &) = d(ul,u?, - u", 6,62, ) = z(u) + Zéjnj(w(u))
j=1

d—n

d
=Y (@'(w+ Y &ni(z(w))e.
i=1 =1
On the other hand
/ do = / /Dt DEDB)du! - - - dude! - - - de? ™.
B, (M) UX B (R3-7)

Let *D®D® = (a;;). Then we have the following:
& for n+1%4, jSn+1

(3
a;; =4 0 for n+154, 1255 n
0 for 1£¢8n, n+1573

In particular, if 1 £ p,q £ n, we have

d k
Qpq = Z T + EM g2 + E) p20 + Z SESU P e
=1 j.s=1
Using the facts (nj, Z,pq) = hjpg, —hipg = (Nj,ps Tq) = 27:1 h’é'pgl‘h
k i k i rs n
we have apg = gpq — 2 Zj:l & hjpg — Zj,s:l §8°> 15 hlsthpl-

Since n = Z?—_q ¢l 75 is a normal vector, we can choose tangent vectors
{zp} pointwisely such that (7, z ) = Z?:l Ehjpg = Apd] and g =
0d.

P

Then app = 1—-2X0,(€, )+ A2(£, z) = (1—Ap)? and Det(*DEDP) =
(1= A1)%(1 — A2)%2--- (1 — A\y)? where \; depends ¢ and z.

Hence it holds that

/ dv
B:(M)

=/ (1 =21 = X2) -+ (1 = Ap)duldu? - - - dumdg? - - - ded—.
Ux B (Rd—7)

O
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COROLLARY 1. Let M be a bounded domain in n-dimensional r-
sphere S™(r).
Let B.(M) ={z € R™*' | 2=z + &2,~¢ S ¢ L €}. Then

/ dv= VoI(M)/€(1+§)"d§.
Be(M)

—e r
PROOF. For a coordinate map a: U C R® — M , we define ® : U X
(—&,6) = Be(M) by ®(w,€) = (14 5)a(u) . Let ds® = 37, gijdatda’

be the metric on M and g be the determinant of (g;;). Using Det(* D®D®)
= (1+ £)?"g, we have

/ dv = / 1+ é)"\/‘Edudé
B:(M) Ux(—¢,€) T

=/ vadu [ 1+ e
U —£ r

Vo) [ 1+ %)"dg.

—€

d

THEOREM. Let M be a bounded domain with boundary in n-dimen-
sional sphere of radius r.
Let A\ be the k-th Dirichlet eigenvalue of Laplace equation (1). Then

k
pIRE
i=1
>k (2m)2 Vol( M)~ 751 (Zi;) <": 1)"_“ (/ 1+ -f;)”d&)m

([ @t bra) ([ reas )
([ s Srra)” ([ meras bre)

for some C®-function n(§) : [—&,e] — R such that n(0) = 1,n(—¢) =
n(e) =0.
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PROOF. Let U be an open set in R™ and a : U — M be a coordinate
patch of M. We consider a tubular neighborhood of M, B.(M), which
is expressed by Be(M) = {z +y € R*|z € M,y € (TM)+,|lyl| £ €}
Then there is a submersion 7 : B.(M) — M such that 7(2) is a unique
closest point from z in M . We define C™- map ¢ : U x (—¢,€) — Be(M)
by (u,€) = (1 + }a(u).

Let {¢:}_, be an orthonormal family of eigenfunctions corresponding
to eigenvalues {\;}*_; . We define C*°-map #; : R**1 = R by

2y [ ¢um(2)n(p(2), for z € B.(M),
¢z(z) - { 0, for z € R*t1 —~ BE(M)

where p: B.(M) — R is the distance function from z to 7(z) and n(§) :
[—€,€] — R is a C*>°-function such that n(—e) =n(e) =0 and n(0)=
1. Then {¢;} is an orthogonal family.

Let ®&(z,y) = Zle #i(z)$;(y). Then the Fourier transform of ®(z,y)

is

B = @mF [ a@)e
Rn+l

= (2m) " ®(z,y)e' <™ dx.

B (M)

By the Planchel formula,

< 2
Iy LS
Rntl R+l

We define the function F : R*t! — R by

Fe) = [ 1B ay

2
=/ |(27r)‘ﬁgi ®(z,y)et™* dz| dy.
Rn+1

Rn+1
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We want to estimate the upper bound of F(z). By Holder’s inequality

2

/ &(z,y)e®? dx
B (M)

< / ®(z,y)|? do / 6 2 d
B (M) B (M)

£

< S @b @) e Voo - [0+ b e
Be(M

)’LJ 1 —¢

_2452 / 26+ )"d§ Vol(M) - (1+ )"d€

—€

Hence we have

F(z) = (27r)_(”+1)/ / ®(x,y)e'<=*> dx
Be(M) |/ B(M)

3 2
< (2m)~ "Dk (/_ n2<§)(1+§)"ds) Vola) - [+ Eyrae.

—€

dy

On the other hand

[ F@de= [ [ (b ds
Rn+1 Rnt+1 Rn+l
= [ [ eyl
Rn+1 Rn+1

k
- /BE(M)/ (M) Y $i(2)$i(y)d;(x);(y) dedy

i,5=1

=k</_sn @1+ )”d&)

/\

Using the fact (iz2-®)(z,y) = z;®(2,y) and the Planchel formula, we
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calculate that

/ 22F(2) dz = / / 121212, ) dudz
Rnt+1 n+1 JRn+1

n+1

/ / Zzlq)zl@dzdy

Rn+1 Rn+1
—_—/ / IV.®(z,v)|? dydz

R+l JRnt+1
= / / (V. ®|* dzdy

Be(M) J B(M)

n+1

[ S 66,0 dy- / 3" 640,8:()0.8, (x) dz.

1,31 lq“

=3 [ sttt avie [ o€

2,7=1

/ (Z glq(1+ ) al¢t q¢J"7 (€) +¢i¢j77,(§)2) av
Be(M)

l,g=1

k &

=Z/ )+ Srde [ Ertae [ 9o v
k

+Z/ 77(6)(1+ dé/~ 2+t 2)" dg

= - Z /_ ] (&)1 + —)"ds n2(§)(1 + §)”‘2 d¢ /M ¢iAp; AV
/ 2(¢)(1+ 2 )”dé/ O+ e

—ZA/ 2(6)(1 + )"d&/ €)1+ Srd
/_€n<§)<1+ )"d§/ 7€+ Sy e,
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By Lemma 1, we have

>
i=1
>k(2m)2Vol(M)~ =41 (Zi;) (";I)m (/_ (1+ f—)” dé)"_“

([ reasbra) ([ reasbrra)
([ rensbrra) ([ meras br )

—€ _—

for some C°-function n(€) : [—¢,e] — R such that n(0) = 1,n(—¢) =
n(e) = 0. O

COROLLARY 2. Let M and )i satisfy the hypothesis of Main Theo-
rem. Then

-2

A Z (2m)2Vol( M)~ =5 (”+1) (n+1)"i’l (/e 1+ g)”dg)m

n+3 Wn —e

([ e brae) ([ @us )
([ rous ra) ([ meras brae).

COROLLARY 3. Let r be bigger than 1r* — 2(3)3n8(n® —1). Let M
be a bounded domain in 2-dimensional r-sphere S*(r).
Let My, be the k-th Dirichlet eigenvalue of Laplace equation (1). Then

1 s 4n? 41
MeZelmr )i 2T L2
c2 A Somn)’ T8 T 3w

where ¢ = 3($)5(n2 — 1)(2)5.
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PROOF. We define C®-function n(z) : [~¢,¢] — R by n(z) =
1cosZx + 1. Then n(z) satisfies that n(0) = 1 and n(—¢) = n(e) = L.
Also, in r-sphere S™(r), we can take € = r. By Corollary 2, it holds that

A Z 8332~ 1)(2)¥ Gyakan) ¥ — §% + §75 Since wy = 4 and
Vol(M) £ 4rr? | we have the conclusion. O

REMARK. In r-sphere S™(r), it is possible to take € = r. Therefore,
in Corollary 2, the lower bound of A\x depends on the curvature % of M,
the volume of M and k& .
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