A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees

하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구

  • 장태성 (한국과학기술원 기계공학과) ;
  • 이정주 (한국과학기술원 기계공학과) ;
  • 윤용산 (한국과학기술원 기계공학과) ;
  • 임정옥 (경북대학교 의과대학 의학연구소)
  • Published : 1998.10.01

Abstract

In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

본 논문에서는 하지 전단 환자의 보행 성능을 개선하고, 활동성을 증대시긴 목적으로 에너지 저장형 의족의 유연 용골 선계를 위한 기초 연구를 수행하였다. 문헌에서 얻을 수 있는 2차원 시상면에서의 정성걸음새와 인체측정 데이터를 분석하여, 의족의 유연 용골 기초 구조 모델을 제시하였다. 기초 구조 모델은 단순한 빔과 선혈 회전 스프링 ·댐퍼로 구성되었다. 고강도 경량 소재를 의족의 유연 용골 기초 구조에 적용하기 위해 탄소섬유 강화 복합재료를 용골의 기초 구조 소재로 선정하였다. 빔의 형상 변화에 따른 복원변형에너지를 유한요소해석에 의해 계산해내고, 빔형상 변화가 설계변수가 될 수 있음을 제시하였다. 복원변형에너지를 많이 저장할 수 있는 유연 용골 구조의 설계를 위해, 직교배열표를 이용한 조지전 시뮬레이션 계획을 세우고, 유한요소 프로그램인 ABAQUS를 이용하여 계획에 따른 유한요소해석을 수행하고, 분산활석을 통해 효과적인 에너지 저장형 의족의 유연 용골 구조를 얻어냈다. 유연 용골 구조를 이용한 의족걸음새의 동적 시뮬레이션 모델을 완성하고, 한 보행 사이클 동안의 동적 해석을 수행하였다. 그리하여 의족 시스템 개발을 위한 효과적 설계 과정이 제시되었다.

Keywords

References

  1. Human Walking (2nd Edition) Jessica Rose;James G. Gamble
  2. Proceedings of 7th World Congress of ISPO The VA/Seattle Prosthetic Limb System: Development and Early Results Burgess, E.M.;Boone, D.A.;Aulie, A.L.;Harlan, J.S.;Smith, D.G.;Forsgren, S.M.
  3. Journal of Rehabilitation Research and Development v.22 no.3 Development and Preliminary Evaluation of the VA Seattle Foot Burgess, E.M.;Poggi, D.L.;Hittenberger, D.A.(et al.)
  4. Orthotics and Prosthetics v.37 no.1 The Seattle Prosthetic Foot-A Design for Active Sprots: Preliminary Studies Burgess, E.M.;Hittenberger D.A.;Forsgren S.M.;Lindh, D.
  5. Medical & Biological Engineering & Computing Modelling and Gait Evaluation of Asymmetrical-Keel Foot Prosthesis Allard, P.;Trudeau, F.;Prince, F.;Dnasereau, J.;Labelle, H.;Duhaime, M.
  6. Prosthetics and Orthotics International v.21 Energy Storage and Relase of Prosthetic Feet Part 1: Biomechanical Analysis Related to User Benefits Postema, K.;Hermens, H.J.;De Vries, J.;Koopman, H.F.J.M.;Eisma, W.H.
  7. Prosthetics and Orthotics International v.21 Energy Storage and Relases of Prosthetic Feet Part 2: Subjective Ratings of 2 Energy Storaging and 2 Conventional Feet, User Choice of Foot and Deciding Factor Postema, K.;Hermens, H.J.;De Vries, J.;Koopman, H.F.J.M.;Eisma, W.H.
  8. Arch. Phys. Med. Rehabil. v.74 Comprehensive Analysis of Dynamic Elastic Response Feet: Seattle Ankle/Lite Foot Versus SACH Foot Lehmann, J.F.;Price, R.;Boswell-Bessette, S.;Dralle, A.;Questad, K.
  9. ABAQUS/Standard User's Manual Hibbitt;Karlsson and Sorensen, Inc.
  10. Orthotics and Prosthetics v.39 no.1 A Laminated Ultralight Prosthesis Hittenberger, D.;Putzi, R.
  11. Proceedings of ICCM-11, Gold Coast A Development of Composite Artificial Leg Shell Using RTM Process Um, M.K.;Kim, B.H.;Kim. B.S.;Jun, E.J.
  12. 복합재료역학 및 가공론 이대길
  13. Biomechanics of Human Movement Winter, D.A.
  14. Biomechanics of Human Movement Winter, D.A.
  15. Transactions of the ASME Journal of Biomechanical Engineering v.109 A Structural Model for Molded Thermoplastic Ankle-Foot Orthoses Leone, D.J.
  16. 응용실험계획법 박성현
  17. 현대실험계획법 박성현
  18. Analytical Methods in Vibrations Meirovitch, L.