Abstract
Calculation of intersection points by two curves is fundamental to computer aided geometric design. Bezier clipping is one of the well-known curve intersection algorithms. However, this algorithm is only applicable to Bezier curve representation. Therefore, the NURBS curves that can represent free from curves and conics must be decomposed into constituent Bezier curves to find the intersections using Bezier clipping. And the respective pairs of decomposed Bezier curves are considered to find the intersection points so that the computational overhead increases very sharply. In this study, extended Bezier clipping which uses the linear precision of B-spline curve and Grevill's abscissa can find the intersection points of two NURBS curves without initial decomposition. Especially the extended algorithm is more efficient than Bezier clipping when the number of intersection points is small and the curves are composed of many Bezier curve segments.