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Abstract
A method to predict the dynamic roll stability of hard-chine planing craft is presented. Start-
ing with the equation of motion, an equation governing small roll perturbations is developed.
The roll restoring moment acting on the hull is evaluated by considering “static” and dy-
namic contributions. The contribution of rudders and skegs, which is significant for this type
of craft, is also determined. A worked example is presented to show how the method can be
used to find the maximum center of gravity height for transverse stability.

1. Introduction

Planing craft are probably the most widely used high-speed marine vehicles, with applications
ranging from small pleasure boats to large military craft. Procedures for the hydrodynamic design
of planing hulls are fairly well established at present; however most of the published information
has been focused on “performance” (resistance, power and trim vs. speed) and seakeeping (wave-
induced motions and bottom pressures). Little information is available on the dynamic transverse
stability of these craft. As a results, designers must resort to procedures which have been devel-
oped for displacement craft, which may be satisfactory at low speed but which do not account
for dynamic effects. With increasing maximum speeds and the corresponding low trim angles,
potentially dangerous instabilities which are not apparent at low speeds are being observed more
frequently[Savitsky, D., 1992] [Codega, L. & Lewis, J., 1987][Blount, D. L. & Codega, L., 1991].
As late as 1991 it was stated that “little known about the fundamental causes, and no guidelines
presently exist to ensure adequate dynamic stability”[Blount, D. L. & Codega, L., 1991].

The present work provides a means to predict dynamic stability of hard- chine planing craft
which can be used in preliminary design. The method is based on the equation of roll motion of
the craft, together with a semiempirical method to predict the roll restoring moment as a function
of speed, trim angle, and particulars of the vessel.

2. [Equation for Roll Motion

The most convenient coordinate system for describing the motions of a surface craft has its origin
at the center of gravity(CG) of the vessel, with the X-axis horizontal through the bow; the Y-axis
is horizontal to starboard, and the Z-axis is vertical, positive downward. This coordinate system,
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referred to as the “waterplane coordinate system”, yaws with the vessel, but the XY plane remains
horizontal. This coordinate system is shown on Figure 1.

Figure 1. Waterplane coordinate system

Relative to this coordinate system, the roll moment equation can be written as follows[Lewan-
dowski, E. M., 1994]:

d
K= EE (IIp e I:cyq - Izz"') - R (Iyq - Iyz"" - Izyp) 1
where K is the “applied” roll moment, I;; are the moments and products of inertia relative to the
waterplane axes; R is the yaw angular velocity about the Z-axis; and p, q and r are angular velocity
components about body-fixed axes coincident with the waterplane axes at zero speed. They are
related to the rates of change of the trim and roll angles as follows:

= ¢ )
= T (3)
= RcosTsec¢d —Ttan¢ 4)

where ¢ and 7 are the roll and trim angles, respectively. It is noted that the moments and products
of inertia relative to the waterplane axes vary in time as the vessel rolls and trims.
The “applied” roll moment K consists of hydrodynamic and hydrostatic moments on the hull
and appendages:
K=K+ K, (5

where K, is the contribution of the hull and K, is the contribution of the rudders and other
appendages in the presence of the hull. It is conventional in ship maneuvering work[Mandel,
P., 1967] to assume that hydrodynamic forces and moments can be expressed as functions of the
orientation of the vessel and its linear and angular velocity components; thus for the hull moment,

Kh=a1d+ asV + asR + asd + asd + - -- (6)
where WU is the hydrodynamic drift angle,
¥ = —tan"'V/U

and U and V are the X and Y components of the vessel velocity U. The coefficients a; must be
determined from test data as no reliable means presently exists to compute these quantities.
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The contribution of a rudder, on the other hand, can be reliably estimated based on the lift rate
of the rudders and an effective lever arm:

K, = ‘E‘:arlr (7N
where dF, /da, is the lift curve slope of the rudder, , is the hydrodynamic angle of the attack
of the rudder and [, is the lever arm of the rudder force(in the YZ plane) relative to the CG of the
vessel. The negative sign in the equation above reflects the fact that a positive force on the rudder
(to standard) induces a negative roll moment (counterclockwise looking forward) since the rudder
is located below the origin (CG). The lift of the rudder can be determined from the following
semiempirical expression from Reference[6]:

dF, (1 _, 1.87
doy = (z”Ur A’") 1+ 25 ®

where U, and A, are the velocity of the flow at the rudder and rudder planform area, and AR, is
the effective aspect ratio of the rudder; for rudders mounted against the hull, this can be taken to
be twice the geometric aspect ration to account for the “reflection plane” effect of the hull. The
lever arm of the rudder force in a vertical plane is given by

ly = yrsing, + (2, cos T — z, SInT) COS ¢, (9)

where (z,,y,, 2r) are the coordinates of the center of rudder force in a body-fixed system with
origin at the CG as shown on Figure 2, and ¢, is the roll orientation (cant angle) of the rudder.

Figure 2. Body axes coordinates of appen-
z dages

2.1. Perturbation Equation

The behavior of the vessel subsequent to a small pure roll perturbation ¢’ to a steady state equilib-
rium condition denoted by (Us, Vi, Ws, 05, gs, 7's, ¢s, Ts, - - -) can be examined by substituting

b= detd
b= bt
b= b+

in Equations (1)-(6) above. Further, since ¢, is itself a solution to these equations (provided that
the other variables are equal to their steady-state equilibrium values), the “steady-state™ equation
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can be subtracted from both sides of Equation (1) to yield an expression for the roll perturbation
P
d
K(Cbs + ‘bl) - K(¢s) = E? [ (¢s + d’) myQS - Izzrs (¢s + ¢/)]

- R [ yds — yzrs ¢s + ¢) Izy (¢s + ¢’)}

d

- ‘&E [ ( ) - zyQS S P (¢s)]

- R [ yds — Iyz"'s (¢s) - Izy (¢s)] (10)

In the equation above, r(¢) indicates that r is a function of ¢, as shown in Equation (4), and K is
given by Equations (5)-(7). Furthermore , in steady-state the roll and pitch angular velocities and
accelerations must be zero. Thus equation (10) reduces to the following form:

AK = x¢, - I;zArs + Ix(i).’ — I Ars + RstzArs + RsIzy(ﬁ, (1)
where the notation

Af :f(¢s+¢,) —f(¢s)

has been introduced. The left-hand side of this equation, from Equations (5)- (7), has the following

form:
dF,

doy,
Equations (11) and (12) constitute a second-order ordinary differential equation for a roll perturba-
tion about any equilibrium value. If the initial condition is chosen to be straight-ahead motion, as
is conventional in stability studies, then Ry = 0, ¢; = 0, 75 = r; = 0 and in this case, neglecting
the higher order terms in Equation (12) is justified. Thus the equation for a small roll perturbation
about straight-ahead motion becomes

AK = a1¢' + asd' + asd +

Ly (12)

(I — as)¢' — asd’ I, =0 (13)

Fr
doy
where the (small) product of the rate of change of I, and the roll velocity perturbation (the first

term in Equation (11)) has been neglected. The change of angle of attack of the rudder induced by
a small roll perturbation about straight-ahead motion is given by

Aa, = —¢' sinT cos ¢, — ¢ (z, sin T cos ¢ — 20) /U (14)

where (as before) z, and z, are the body-fixed coordinates of the effective center of the rudder, and
¢ is the roll orientation (cant angle) of the rudder. Here it has been assumed that the trim angle 7
is sufficiently small that its cosine can be replaced by 1. Thus using Equation (14), Equation (13)
becomes

(I, — as)¢' — [ag + Az, sinT cos ¢, — z)/U)¢" — (ag + AsinTcos ¢, )¢’ =0 (15)

where

dF,
A= —I,

doy
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When more than one rudder is used, or skegs or other appendages are present, Equation (15)
should be replaced by

(I; —as)¢ — |ag + ZAi(a:”- sin 7 cos ¢p; — z”-)/U} (/J’ - <a1 + ZAi sin T cos gi)”-) ¢ = 0(15a)

where the summations are taken over the number of appendages.

3. Stabilty Analysis
The solution of Equation (15) or (15a) is well known:
¢ = Pre7t + et (16)

The stability of the vessel when subjected to a small pure roll perturbation is determined by the
sign of real parts of the quantities o; and oy , which (following conventional stability and control
terminology) will be referred to as the stability indices for rolling motion. Substitution of Equation
(16) in Equation (15) ultimately yields the following expression for the stability indices in terms
of the coefficients of Equation (15):

~-B++vB?-4AC

o12 = oA (17)
where
A == Iz — apy
B = —laqs+ Az, sinTcos ¢ — z,) /U]
C = —(a;+ AsinTcos¢,)

Stability is ensured if C is greater than zero [Mandel, P, 1967]. The coefficient a; is the roll
restoring moment rate, which is a negative quantity for a proper design (i.e., a positive roll angie
induces a negative roll moment). The second term in braces in the expression for C represents the
effects of the rudder on the roll resorting momemt; it is positive for positive trim angles. Thus the
presence of a rudder reduees the roll stability of the craft at positive trim angles.

The sign of the quantity (B? — 4AC) determines whether the vessel undergoes oscillatory
motion: If this quantity is negative, the stability indices are complex and the motion is a damped
oscillation. If this quantity is positive, the roll disturbance decays (for C' > 0) or grows (if C' < 0) -
exponentially.

3.1. Evaluation of Coefficients

The roll stability of a vessel depends to a large degree on the magnitude and sign of the roll
restoring moment coefficient ap; it is of interest to the designer to determine this quantity at an
early stage of the design process. The most reliable way to do this is by analysis of test data (i.e.,
roll restoring moment at a range of speeds, roll angles, and trim angles) for the particular hull
under consideration; however, this is not always practical. To provide some guidance for cases in
which no data are available, the following formulation is offered.
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The roll restoring coefficient is assumed to be expressible as the sum of static and dynamic
contributions:
a; = ais + aiq (18)

For displacement hulls, the restoring moment is purely static; the roll restoring moment rate is
given by the product of the displacement and the transverse metacentric height (GM). A more
general expression, which is more applicable to the present situation, is

a1s = —pglwp + BG - A (19)

Where Iy p is the waterplane area moment of inertia, BG is the distance from the center of buoy-
ancy of the displaced fluid to the VCG, and A; is the “static” lift, or the buoyancy due to the fluid
displaced by the hull. The waterplane area moment of inertia for a planing hull can be approxi-
mated as follows:

ble b2, b?wg

Iwp = / Yy dAwp = / yl(y)dy =~ —=(Li + 3Lc) (20)
—b/2 —b/2 48

where [(y) is the local wetted length, and L and L. are the wetted keel and chine lengths, respec-

tively; b is the average wetted chine beam. The weight of the displaced fluid can be approximated

as

b% tan '

Ay = rg ﬁ(2Lc + Lk) (21)

and the height of the center of buoyancy is

b
KB = 3 tan 3 (22)
Combining with Equation (19), we have
b3 b

ays = 0.624 —ngé(Lk +3L.) + (KG — 3 tan 8) - Ag (23)

where the factor of 0.624 reflects the reduction of static lift due to displacement of the free surface
around the hull[Brown, P. W., 1971]. Since the wetted chine and keel lengths are functions of
speed, it can be seen that the “static” restoring moment rate is actually speed dependent, and in
fact generally decreases with increasing speed because of its dependence on Ly and L.

The “dynamic” roll restoring rate can be estimated using the well-established planing equation.
The expression for planing lift which is most useful in the present application is that given by
Brown 1971, in which the dynamic and static contributions are distinct. The dynamic contribution
to the planing lift coefficient is:

1.33

- i T+ —'4—/\ cos 7 sin 27 cos 3 (24)

L
Crpa = 7‘[— = sin27 Z—(l —sinf)cosT

where 3 is the deadrise angle, b is the beam at the chine, and X is the mean wetted length to beam
ratio,

Lk+Lc

A
2b

il
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When the hull is at a roll angle, Equation (24) can be used to compute the contributions of the port
and starboard sides, using effective deadrise angles shown on Figure 3:

ﬁe,stbd =f- ¢ ﬁe,port = B + d’ (25)

“.i“"

Figure 3. Effective deadrise angles for planing hull at a
roll angle

For a prismatic plaining hull the difference between the keel and chine wetted lengths is also
a function of deadrise angles[Savitsky, D., 1964]:
bt
Ly - L = 2220 (26)

mtanT

thus values of L. and A can be computed for the port and starboard sides if it is assumed that Ly is
constant for small roll angles(this is, in fact, supported by experimental evidence[9]); for example:

Ly _ tan Be,port

),\porl % T ntanrt (26a)
Thus the dynamic force action normal to the port deadrise surface, for example, is
. sin 27 s ) Aport
F, = —pU?b? { ———— | =(1 —sin 1) cos T —FZ
d,port 2,0 { 2 cos ﬁe,pori [4 ( ﬂe,pmt) 1+ )\port
1.33 .
+ —Z—)\pon cos T sin 27 cos ﬁe‘pon] } (27)

with a similar expression for the starboard side. An approximate expression for the location of the
center of pressure is given in Reference [10]:

cp:0.8-z4r—‘s

where s is the width of the deadrise surface,s = b/(2cos /) ,and cp is measured from the keel
(Figure 3). Thus the lever arm for the dynamic moment about the CG is

b
= 0. -~ - 8i 2
arm 088(:05[3 KG-sing 28)
The dynamic roll moment is then given by
b .
K= (Faport = Fausa) - (085 — KG -sin ) (29)
8cos 3
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and so the restoring moment rate is

d h
g = | —K, Fyoore — F, 0 {0.8—— — K(@si
a1 [ = d] . (Fasort = Faad)oco ( e emﬁ) (30)

It is possible to obtain an analytical expression for a4 in terms of 7, 3, and , L, but the expression
is quite lengthy; alternatively the approximation

[dl(a} . Kal¢") -~ Ka(0) _ Ku(¢")
dp | =g ¢* P*
can be used, where ¢* is a small roll angle.

Since the dynamic lift generally decreases with increasing deadrise(other factors being equal),

the first term in Equation (30) is generally negative; the sign of the dynamic roll restoring moment
rate thus depends on the sign of the lever arm term. The maximum KG for the dynamic moment

to be stabilizing is then
(KG) . 0.87
b Jaax 8sinfcosf

which 1s illustrated in Figure 4 below.

31

Max KG for Stabilizing Dynamic Moment

4 T T T 1

3 ]
s -
2

1 T

o | | L

(] 5 10 15 20 25 30 . . .
. Figure 4. Maximum KG for dynamic moment to be
Deadrise, deg

stabilizing

Using Equation (17) the stability criterion is given by

— (a]s +ayq+ Y Aisintcos d)ri) >0 (32)

1

where as before the summation is taken over the number of rudders and skegs.

4. Application : Prediction of Dynamic Roll Stability

To illustrate the application of Equation (32) in a practical case, the example of a 64 ft planing
craft cited by Wellicome and Campbell[1984] will be examined. Particulars are given in Table 1.

This craft resportedly suffered an apparent loss of stability at 35 knots during trials, where a
“tendency to loll” on straight course and a “sharp inward {ist” during a turn were reported. The
running trim of the craft is estimated to be 5.4 degrees at 35 knots based on the method[Savitsky,



Edward M. Lewandowski; The Transverse Dynamic Stability of ...

Table 1. Characteristics of 64 ft Planing Craft[Wellicome, J. F., & Campbell, I. M. C., 1984]

LOA 64 ft
LBP 56.7 ft
Deadrise 15.8°

Chine Beam
Amidships 15.44 ft

Transom 11.41 ft

Mean 1343 ft
Displacement | 37 ton

LCG 20.77 ft fwd transom

VCG(KG) 5.125 ft

Appendages(assumed to be normal to hull)

Rudders(2) “P-brackets”(2)
Span 3.67 ft 3.67 ft
Mean Chord 1.36 ft 1.36 ft

Assumed Center of Force of
Stbd Appendage(x,y,z).ft (-20.0,2.85,6.226) | (-18.0,2.85,6.226)

D., 1964] and information[Wellicome, J. F., 1984]. Wetted keel and chine lengths were determined
as 40 ft ([Wellicome, J. F., 1984]) and 27ft (Equation 26} respectively.

The limit of roll stability occurs when the quantity C is just equal to zero. Equation (32)
can thus be used to determine the maximum value of KG for dynamic transverse stability. The
calculation procedure is outlined in Table 2. The dynamic roll restoring moment rate is computed
using Equation (31), with a value of ¢* of 1° ; thus the “effective” deadrise angles are 16.8° and
14.8° on the port and starboard sides, respectively.

The flow velocity at the rudder is required for computation of the rudder force rate as shown
in Equation (8). The flow velocity at the rudders is increased by the propeller wash; a simple
approximation for the increase is available from momentum theory[Glauert, H., 1959]:

U\ 2 8 Kp
— | = —— 33
(U) 1+7r J? (33)

where K and J are the propeller thrust coefficient and advance ratio, respectively. If these are not
known (as in the present example), a representative value[Blount, D. L., 1975] of

Kp/J? =02
can be used, giving

U? = 1.5U2

Table 2 indicates that the maximum height of the CG above the keel for this vessel is 7.7 ft. The
maximum KG for stability is shown as a function of Figure 5 below.
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Table 2. Sample Calculation

Given: 8 = 15.8 deg, byye = 13.43 ft, U =35 knots, b= 15.44 ft, A = 82880 Ib, L =40 ft

Quantity Value Source
1 T 5.4 deg. Ref[8]
2 | L. 27 ft Eqn (26)
3| A 25,600 1b Eqn (21)
4 | KB 1.267 ft Eqn (22)
5 | ays -264,098+15,974 KG Eqn (23)
6 | Aport(¢* = 1deg) 2.470 ft Eqn (26a)
7 | Astwa(®* = 1 deg) 2.533 ft Eqn (26a)
8 | Fuport(¢* = 1 deg) 33,905 b Eqn (27)
9 | Fystwa(d* = 1deg) 35,242 1b Egn (27)
10 | arm 4.385-0.2723 KG ft Eqn (28)
11 | Ky(¢p* =1 deg) -5863+364 KG ((8)-(9NX(10)
12 | aiq -335,925+20,856 KG Eqgn (31)
13 | dF,/da, 27.75U2 = 96,975 Ib/rad Eqns (8),(33); U? = 1.5U7
14 | dFy/da, (“p-brackets™) 18.50U2 = 64,650 Ib/rad Eqn (8)
15| 1, 3.475+0.959 KG ft Eqn (9), Table |
16 | I, 3.311+0.959 KG ft Eqn (9), Table 1
17 | A, 336,930+92,983 KG (13)X(15)
18 | Ay 214,019+61,989 KG (14)X(16)
19 | @, 15.8 deg (assumed normal to hull)

Inserting the results of Steps 5, 12, 17 and 18 in Equation (32) yields the stability criterion in terms

of KG:

Max stable KG. ft
(o]

10

-(-264,098+15,794KG - 335,925+20,850KG
+2]336,930+92,983KG+214,019 + 61,989KG]sin(5.4°) cos(15.8°)) > 0
KG <7.7ft
where the factor of 2 preceding the square brackets accounts for two rudders and brackets.

20 30

Speed, knots

40

50 Figure 5. Behavior of maximum stable CG height

with speed
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It is noted that the stability limit is substantially lower at planing speeds than at low speeds;
in fact the maximum KG for transverse stability at zero speed, determined by “‘traditional™ static
stability calculation, is 10.2 ft [Wellicome, J. F. & Campbell, I. M. C., 1984], 32% higher than the
calculated value at 35 kt. In the present example, this is totally due to the effect of the appendages:
The loss of “static” roll restoring moment, due to loss of waterplane area, is more than made up for
by the dynamic roll reatoring moment , which is stabilizing in this case. Neglecting the influence
of appendages, the maximum KG for dynamic transverse stability is 16.3 ft at 35 knots, much
larger than the zero speed vaiue. Thus consideration of appendage effects is critical in dynamic
transverse stability analysis. These results show that addition of large skegs, or increasing the
rudder size, to improve stability will have the opposite effect on dynamic roll stability.

Wellicome, J. F. & Campbell, I. M. C.[1984] also contains the results of transverse stability
tests conducted on a 1/16 scale free-running model of a 22.5 meter patrol boat. The KG of model
was remotely adjustable by means of a sliding weight. Test were conducted at a range of speeds
to determine the minimum center of gravity height which resulted in loss of transverse stability
(resulting in capsize). It was also found that the craft became uncontrollable for a range of KG
values below that resulting in capsize. A comparison of these results with the maximum stable KG
predicted by the present theory is shown on Figure 6. It can be seen that the predicted maximum
KG exceeds the observed value for capsize, but that the values are fairly close at the higher speeds.

These comparisons show that the results of the present method can be a useful indicator of
potential stability problems. It is up to the designer to ensure that an adequate safety margin exists
relative to the prediction, and the examples cited may provide some guidance in this respect. It is
emphasized that the most reliable means to assess stability, short of full-scale trials, is through a
towing tank test. One possible test technique would involve towing the properly ballasted model
free to roll (as well as free to trim and heave) and observing its behavior in the presence of small
roll perturbations. The model must be equipped with all appendages for these tests, as shown by
the results of the worked example above.
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