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A Note on Parametric Bootstrap Model Selection'
Kee-Won Lee! and Songyong Sim?

ABSTRACT

We develop parametric bootstrap model selection criteria in an example
to fit a random sample to either a general normal distribution or a normal
distribution with prespecified mean. We apply the bootstrap methods in
two ways; one considers the direct substitution of estimated parameter for
the unknown parameter, and the other focuses on the bias correction. These
bootstrap model selection criteria are compared with AIC. We illustrate that
all the selection rules reduce to the one sample t-test, where the cutoff points
converge to some certain points as the sample size increases.
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1. INTRODUCTION

1.1. Problem Description

Suppose that we have a random sample X3, ... , X, from a normal distribu-
tion with unknown mean and variance p and o? respectively. We wish to check
whether the proposed model can be simplified by specifying the mean as p = fio;
a prespecified value.

Denote the probability density function of a normal distribution with param-
eter € © = {(u,02) : —00 < p < 00,02 > 0} by g(-,0), and the distribution it-
self by N(u,0?). Then, the problem reduces to the model selection between § € ©
and 6 € O, where Og = {(1,0?) : p = po,0? > 0}.
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1.2. Selection Criterion

We use the following measure of discrepancy, which is based upon Kullback-
Leibler information quantity, as our model selection criterion to choose one dis-
tribution over another:

E[ - 2nE{1ogg(z,é)}], (1.1)

where Z is independent and identically distributed with X;’s. Z is usually termed
a future observation.  is the maximum likelihood estimator (MLE), which min-
imizes —2% 7, log g(X;,0). We select a model with the smallest value of (1.1).
The inner expectation in (1.1) is taken with respect to the future observation Z,
and the outer expectation with respect to 6= é(Xl, ..., Xn) to average out pos-
sible sampling variation. The employment of a future observation reflects the
idea that the model selection should be based on the performance of the model
over a new observation rather than what we currently have.

1.3. Asymptotic Approach

Akaike (1973) developed AIC to estimate (1.1) from an asymptotic approach.
AIC is given by

-2 logg(X;,0) + 2p, (1.2)

1=1

where p is the number of parameters in the model.

An introductory review of AIC, including a motivation of AIC through Kullback
Leibler information quantity and an explanation as to the historical reason why
the mysterious number 2 appears in (1.1), can be found in Sakamoto, Ishiguro,
and Kitagawa (1986, chap. 4).

1.4. Bootstrap Approach

A key idea in using the bootstrap method is to substitute a consistent estima-
tor in place of the unknown parameter. The expectations in (1.1) are taken with
respect to the true distribution which we believe generated the random sample.
Therefore, the bootstrap sample should also be drawn from the estimated true
distribution, in principle. See Linhart and Zucchini (1986, chap. 2) for a non-
parametric bootstrap approach to model selection problems. Since we have two
competing parametric distributions to choose from, the bootstrap samples should
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be drawn from the two estimated distributions in a parametric way to assess the
expected values.

The bootstrap method can be used to estimate (1.1) in two ways. In a clas-
sical plug-in bootstrap approach, we estimate (1.1) directly by plugging-in the
estimated parameter in place of the unknown parameter, while in a refined one
we focus on the bias correction of -2 3", log g(X;, 0) as an estimator of (1.1).

Efron and Tibshirani (1993, chap. 21) gives an overview of parametric boot-
strap.

Naive Plug-in Bootstrap

In this approach (1.1) is estimated directly by substituting 6 for 6 in (1.1) as

follows:

Step 1. Draw a bootstrap sample X§,... , X from the fitted normal distribution
with estimated parameter 6.

Step 2. Compute the bootstrap version of § which minimizes —2 Yo logg(X},0)
Denote it by 6*.

Step 3. Evaluate the bootstrap version of (1.1);
E*[-2nE{ logg(Z*,é*)}], (1.3)
where Z* is a future observation of the bootstrap sample.

Bias Corrected Bootstrap

Shortly, we will check that (1.3) still has a downward bias of amount roughly
equal to the number of parameters, one major reason being that the bias of the
obvious estimate is still large relative to its standard error.

A refined bootstrap approach focuses on the bias correction. The bias of
-2 7" log g(X;,8) as an estimator of (1.1) is given by

bias(8) = E{ - 2Zlogg(Xi,é)} - E[ —2nE{logg(Z, 0)} . (1.4)

i=1

In fact, AIC uses —2p as an estimator of (1.4) from an asymptotic approach.
We obtain the bias corrected bootstrap estimator of (1.1) by following the steps
in the Naive plug-in bootstrap approach with a minor modification at the final
stage.
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Step3'. Evaluate the bootstrap estimator of (1.4);

bias(6) = { - ZZlogg (X7,0%) } E*[— 2nE{ 10gg(Z*,é*)}],
(1.5)
and add it to =237 4 log g(X;, 0).

2. SELECTION CRITERIA

First, we need the followng facts about the polygamma function on which
statistical properties of naive bootstrap selection criteria depend heavily.

2.1. The polygamma function

Polygamma functions are defined as the derivatives of logI'(z). In general,
the s-gamma function is defined as d*~!logT'(z)/dz*~! = ¥~ (x) for s > 2,
where ¥(z) = dlogI'(z)/dx is the digamma function. See Abramowitz and Ste-
gun (1968) for more properties.

This special function appears in statistical literature when we express higher
order moments and cumulants of a natural logarithm of the gamma distribu-
tion. In particular, if we denote a chi-square distribution with v degrees of
freedom by x2, then the cumulant generating function of logx? is given by
tlog2 +logT'(t + v/2) — logI'(v/2). From this, we can compute the mean and
variance of log x2 as

E(logx2) = log2 + ¥(v/2),
Var(logx2) = ¥'(v/2).

Using the expansion formula in Abramowitz and Stegun (1968), we can approxi-
mate the digamma and the trigamma function as

U(v) =logr — 1/(2v) + O(v™2),
V() =(v-1/2)"t+ 03,

for large v. See Johnson and Kotz (1970) for further applications of the poly-

(2.1)

(2.2)

gamma, function in statistical sciences.

2.2. Key Notations and Formulae

For 6 € ©g, 0 = (110,6%) with 6% =37 (X; — po)?/n. Draw a bootstrap

sample X7,..., X} from N(uo,5? ). The bootstrap MLE 6* = (u19,5*2) with
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2 =37 (XF — po)?/n. We have

Qe

—23" logg(Xi,0) = nlog2nd? +n,

7 2.
”22?—_—1 logg(le*,H*) = nlog2ﬂ5*2 +n. (2.3)

For 6 € ©, 0 = (f1,6%) with i = 30 | X;/n and 62 = "1 (X; — j1)%/n. Draw a
bootstrap sample X7, ... , X} from N(ji,5%). The bootstrap MLE 6* = (i*, 6*2)
with g* =30 | X! /n and 6*2 =31 (X} — 4*)?/n. We have

—23°7  logg(X;,0) = nlog2ms? +n,

7 2.4
~25"% [ logg(X},0%) = nlog2né*? + n. (2.4)

Note that n5*?/52 and né*2/5% are chi-square random variables with n and
(n — 1) degrees of freedom respectivey.
From (2.3) and (2.4), AIC’s arc given by

nlog2nd? +n+2 for O € O,

nlog2n6% +n+4 for 0 € ©. (2:5)
2.3. Bootstrap Approach
Naive Plug-in Bootstrap
For 6 = (ug,0?), we have
—2nE{log g(Z*,6*)} = n[log 27r~5*2 + B{(Z" - 110)?}/5*?] (2:6)
= n(log2r5*? + 52/5*?).
Taking expectation with respect to N{ug,5?), (1.3) reduces to
n{log 2762 + ¥(n/2) — log(n/2) +n/(n — 2)}, (2.7)
from (2.1). For 8 = (i, %), we have
—2nE{logg(Z*,6")} = n[log2rs*? + E{(Z* - p*)?}/6*?] (2.8)
= n{log2r6*? + (1 + 1/n)56%/6*%}.
Taking expectation with respect to N(ji,62), (1.3) reduces to
n{log2n&* + U ((n — 1)/2) — log(n/2) + (n+1)/(n — 3)}, (2.9)

from (2.1). Note that the final forms of the naive plug-in bootstrap selection
criteria do not depend on any particular realization of a bootstrap sample. From
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the approximation formula (2.2), we can check that the naive plug-in bootstrap
selection criteria are roughly equivalent to AIC — p. That is, this approach leads
to a seriously biased estimated selection criterion. Refer Chung, et. al. (1996)
for a more general dicussion of this phenomenon.
Bias Corrected Bootstrap

For 6 € ©g, the bootstrap bias estimation (1.5) reduces to

E*{n(1-5%/6"*)} = —2n/(n — 2)
by (2.3) and (2.6). Similarly for 8 € ©, (1.5) reduces to
E*{n—(n+1)6%/6"*} = —4n/(n - 3)

by (2.4) and (2.8). Therefore, the bias corrected bootstrap selection criteria are
given by

nlog2m6? +n+2n/(n —2) for 6 € Oy,

2.1
nlog2n6? 4+ n+4n/(n—3) for e 0. (2.10)

Refer Lee and Sim (1996) for a more general discussion.

2.4. Comparison with T-test

Let T—1 = (n — 1)/2(ji — p10) /& be the Student t-test statistic. We can check
that AIC selects 8 € © if nlog?/3% > 2, which simplifies to

T 1] > (n — 1)Y?{exp(2/n) — 1}}? = V2 + O(n™?).
Naive plug-in bootstrap approach selects 8 € © if |T,_| is greater than
(n — )2 [exp { = T(n/2) + ¥((n - 1)/2) — 2/(n — 2) +4/(n - 3)} = 1]*/*,

which can be approximated as 1 + 2/(n — 3) + O(n~2) by the formula (2.2). Bias
corrected bootstrap approach selects § € © if

Toi| > (n—1)"2[exp{2(n=1)/((n-2)(n -3)) - 1}]"/
= V24+0(n?).

It is interesting to note that the cutoff points for AIC and the bias corrected
bootstrap converge to /2 from below and from above respectively, while the
cutoff points for the naive plug-in bootstrap converge to 1 from above. Table 2.1
presents cutoff points and corresponding levels of the two-sided t-test.
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Table 2.1: Cutoff points and corresponding levels of two-sided t-test for AIC,
Naive plug-in bootstrap, and bias corrected bootstrap. Bias corrected bootstrap
approach is denoted by Bootstrap-a, and naive plug-in bootstrap by Bootstrap-b.
Cutoff points are denoted by ¢, and the levels are denoted by a.

AIC Bootstrap-a Bootstrap-b

n Cn o Cn a Cn o
1.4026 0.2334 3.3429 0.0288 2.7321 0.0523
10 1.4116 0.1916 1.8471 0.0978 1.4278 0.1871
20 1.4136 0.1737 1.5850 0.1295 1.1752 0.2544
100 1.4142 0.1604 1.4435 0.1520 1.0309 0.3051

The selection procedures based on these criteria lead to a very conservative
decision and therefore should be used with caution.

3. BIAS AND VARIANCE UNDER ¢ € 0,

What if, in fact, N (g, 0?) is the true model? Then, we can compute (1.1)
exactly, and use it to assess the relative performance of AIC and its bootstrap
competitors. All the selection criteria for § € ©g have n log 2752 in common, and
those criteria for 8 € © have nlog 2762 in common. Under 6 € Oy, the expected
values and variances of these common terms are given by

E(nlog2m?) = n{log2ro? + ¥(n/2) — log(n/2)},
E(nlog2n5?) = n{log2no? + ¥((n — 1)/2) — log(n/2)},
Var(nlog2r5?) = n2¥'(n/2),

Var(nlog2rs?) = n2¥'((n — 1)/2),

(3.1)

by the fact that ng?/c? and né?/o? are chi-square random variables with n
and (n — 1) degrees of freedom respectively under 8 € ©( and the formula (2.1).
From (3.1), (1.1) can be evaluated as

n{log2ra? + ¥(n/2) —log(n/2) + n/(n - 2)} for 8 € Oy,
n{log2nc? 4+ ¥((n — 1)/2) —log(n/2) + (n +1)/(n - 3)} for € O.
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Expected values of AIC are

n{log2mo? + ¥(n/2) — log(n/2) + (n + 2)/n} for 6 € Qy,
n{log2mo? + ¥((n —1)/2) —log(n/2) + (n +4)/n} for 8 € O.

Hence the biases of AIC are —4/(n — 2) for 6§ € Oy and —~12/(n — 4) for 6 € O.
The biases of naive plug-in bootstrap selection criteria reduce to

E(nlog&?/c?) = n{¥(n/2) —log(n/2)} = -1+ O(n7}) for 6 € Oy,
E(nlogé?/o?) = n{¥((n—1)/2) —log(n/2)} = -2+ O(n"!) for € O,

which means that the naive plug-in bootstrap approach still has a downward bias
of amount roughly equal to the number of parameters in the model.

Most notably the bias corrected bootstrap selection criteria are unbiased. Since
the variances are all the same for each selection critria, we may conclude that the
bias corrected boostrap approach gives the best overall performance.
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