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A Generalization of the Discrete Feedback
Adjustment by Rational Subgrouping !

Changsoon Park!, Moonsup Song? and Jaeheon Lee3

ABSTRACT

Process adjustment has been widely used in production processes in or-
der to set the output characteristic as close as to the target. Box and
Kramer(1992) developed a feedback adjustment control procedure for pro-
cess adjustment. We generalize their procedure by using a rational sub-
grouping of sequential observations. In this paper the feedback control rule
of the rational subgrouping is proposed and the overall expected cost is eval-
uated. Also properties of the proposed control scheme are illustrated and
compared to Box and Kramer’s in the context of the expected cost.

Keywords: Process Adjustment; Automatic Process Control; Rational Subgroup-
ing; Feedback Adjustment.

1. INTRODUCTION

Process monitoring and process adjustment are two complementary approaches
to process control. In particular, Shewhart, cumulative sum(CUSUM), and ex-
ponentially weighted moving average(EWMA) charts are frequently employed for
process monitoring as part of what is called statistical process control(SPC). By
use of such charts we can continually check the state of the production system,
and eliminate assignable causes pointed to by discrepant behavior.

By contrast, various forms of feedback and feedforward controls are used for
process adjustment in what is often called automatic process control(APC). APC
attemps to adjust a manipulated variable, whose effect on some output quality
characteristic is already known, so as to maintain the process as close as possible
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to the desired target value(see Box, Jenkins and Reinsel(1994, Part IV), and Box
and Lucefio(1997b)). In this paper, we consider only feedback control. APC has
been discussed for many years since contributions by Box and Jenkins(1962, 1963)
and Box, Jenkins and MacGregor(1974). It has recently gained wider interests
and has been studied by Kramer(1989), Box and Kramer(1992), Lucefio(1993),
Box and Lucefio(1994, 1997a), and Luceno, Gonzalez and Puig-Pey(1996).

Suppose that observations and opportunities for adjustment occur at discrete
times --- ,t — 1,£,t 4+ 1,--- equispaced at what we define as unit intervals. The
conventional Box and Kramer(1992)’s APC procedure, by considering the ad-
justment, the monitoring and the off-target cost, assumed that one observation
is sampled at intervals of m units. In this paper, we generalize this APC proce-
dure by using the rational subgrouping, which is often recommended as a factor
to consider in economic designs of SPC. The sampling scheme with the rational
subgrouping is based on the subgroup size and the sampling interval. Basically
we assume that one item is produced at each unit interval. The subgroup size is
the number of consecutive observations taken as a sample from the production
process. The sampling interval is the number of unit intervals elapsed from the
end of one subgroup to the start of the next. If the subgroup size is equal to 1, the
rational subgrouping method is equivalent to Box and Kramer(1992)’s. We also
propose the feedback control rule and derive the overall expected cost function
when the rational subgrouping is used.

2. BOX AND KRAMER’S APC PROCEDURE

Let X; be the manipulate input variable and y; be the output quality char-
acteristic at time ¢. We assume that one unit change in X; will produce g units,
which is called the system gain, of change in y;. Moreover, we define the distur-
bance z; as y; — T, that is, the deviation from some target value T' that would
occur if no attemp at control were made.

A widely used disturbance model in APC is IMA(0,1,1) process defined as

Zt41 — 2 = Qgy1 — O, ay, (2.1)

where the random shocks a;’s are iid N(0,02), and 0,(= 1 — ),) is a smoothing
constant. The validity of IMA(0,1,1) for disturbance models is illustrated by the
variogram, defined by Var(zism — 2t)/Var(zi+1 — 2:). It is reasonable to think
that, if no corrective action is taken, observations spaced further apart will differ
more and more, and thus the variogram will increase monotonically in m. As
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was pointed out by Box and Kramer(1992, pp. 254-255) and Box, Jenkins and
Reinsel(1994, pp. 493-495), the IMA(0,1,1) process satisfies this property.

Kramer(1989) and Box and Kramer(1992) suggested the APC procedure by
considering the adjustment cost Cj4, the monitoring cost Cps and the off-target
cost Cr. When adjustment and monitoring costs are substantial, it is not optimal
to sample and adjust the process at every unit interval. Instead it would be better
to take observations at every m(> 1) number of unit intervals and make adjust-
ments when a certain criterion is satisfied. Reductions in costs for monitoring
and adjustment will compensate for the increment in cost for off-target.

Let the process sampled at every m unit intervals be n;(= 24y, ) and the one-
step ahead forecast of n;y; at time tm be 7i;41. Suppose that the last adjustment
is made at time tm, then the control procedure is to make an adjustment at time
(t + N)m when |ty n41 — Aer1] > L for the action limit L. Here N denotes
the number of observations taken until the next adjustment. If the disturbance
at every unit interval is generated by the IMA(0,1,1) model in (2.1), then the
sampled process at every m unit intervals n; is also an IMA(0,1,1) process but
with the smoothing constant 6,,(= 1 — A;,) and the variance of random shocks
02, which satisfy

M 62 =mMe2 and 002, = 0,02, (2.2)

Thus the one-step ahead forecast of ny4 x41 can be obtained as an EWMA of the
current and past observations, i.e.,

eaN+1 = Am(neaN + Omngan_1 + 02 e N2+ ---) (2.3)

or
s N4+1 = AN + Omfisen, (2.4)
and the optimal control rule is to set X4 yym = —Rtrn41 /g for the system gain

g. Notice that the forecast in (2.3) or (2.4) is the minimum mean squared error
forecast when the process follows an IMA(0,1,1).

The average adjustment interval(AAI) is the average number of unit intervals
between adjustments, that is, mE(N), and the mean squared deviation(MSD)
is the expectation of squared deviation of the quality from the target per unit
interval, which is defined as

1 N m
MSD = E[ZZ{z(t+, Vg + gXtm} ] (2.5)

i=1 j=1
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Then the overall expected cost C per unit interval is expressed as

Ca Cu OCr
AAlpn + o + _(_T—g— MSDpgg, (2.6)

Cek =

where subscripts BK denote corresponding functions by Box and Kramer(1992).
Kramer(1989) also showed the equation (2.6) could be written in the form
Ca _,Cm
mh[L/(Amom)] m

m— 1))2
+ O { = +mial LfOmon] - R @)

Csk

where h(-) and g(-) are functions related to AAI and MSD, respectively. Sev-
eral methods for obtaining approximations for these functions have been given in
the literature. For example, Kramer(1989) suggested functions based on exten-
sive simulation, and Box and Lucefio(1994) used integral equations in expressing
these functions to solve numerically. Since the approximation by Kramer(1989)
is of a simple form and accurate, we use his approximation in this paper. The
approximations are given by

h(B) = (1+1.1B + B?) {1 ~0.115 exp [—9.2 (B*® - 0.88)2] } ,

B 1+ 0.06B2 B
~ 1-0.647®{1.35[In(B) — 0.67]}

9(B) 1, (2.8)

where ®(-) is the standard normal distribution function.

3. APC WITH RATIONAL SUBGROUPING

The rational subgrouping of sequential observations has been widely used in
process control procedures. By the rational subgrouping we obtain samples of size
n(> 1) rather than a single observation. It is expected that the use of subgroup
sample means will reduce the process variation and will produce more efficient
control scheme than the use of single observation. A subgroup is defined as n
consecutive observations taken during the process and the next subgroup is taken
after h intervals. That is, the sample size is n and the sampling interval is h. At
the time of the last observation in each subgroup a subgroup mean is calculated

as
tm

p= Y, z/n

i=tm-—n+1
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Let m = h + n, then we observe subgroup means at every m intervals. Suppose
that the last adjustment is made at some time ¢m, then we make an adjustment
at time (¢ + N)m when

| Pt N+1 — Pegr| 2 L.

The adjustment is made by setting X ;4. x)m = —Pt+N+1/g. The overall expected
cost C per unit interval can be modified as

_ C4  nCum  Or
=ian t Tt o7 MSDr (3.1)

a

Cr

Note that if n = 1 then the proposed control scheme is equivalent to that of Box
and Kramer(1992). The properties of the rational subgrouping by using p; are
shown by the following theorem and corollary.

Theorem 3.1. The process p; is also an IMA(0,1,1) time series model, that is,
Pyl — Pt = b1 — Op by,
where the random shocks by’s are iid N (0, 012,) and 6, is a smoothing constant.

Proof: Let Vp; = p; — ps—1. The difference Vp; can be written as

tm t-1)m
Vpe = (1/n) [ Z 2z — Z zi]
i=tm—n+1 i=(t—1)m—n+1
n—1 m—1
= (1/n) [ Y41+ KA} Gtmok +7A Y Gimt
m+n_’:=0 =
+ 30 {m+n—1-k)k —ba} am-s|-
k=m

Then, for Vp;, the autocovariance y,(m,n) = Cov(Vp, - Vp;_) are given by

) = % {148+ (m - + S~ 10+ 1) 22},
2

m(m,n) = %{é(n—n(nﬂ)xg—oa},

’Yj(man) = 0, 722

It follows that the process p; is an IMA process of order (0,1,1). O
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Corollary 3.1. The parameters 6,(= 1 — Ap), 012, of pr and Oy, o2 of z are
related as follows.

= miloZ,
2 1 2
Opo? = %%—gm—nm+nﬁ%.

Proof: The following properties of IMA(0,1,1) time series models give the above
results(See Box, Jenkins and Reinsel(1994, pp. 526-529)).

vw(m,n) +2n(mmn) _ (1- 0,)?
M (m"n‘) OP ,
m(m,n) = - pa?,.

O

Notice that from Corollary 1 and (2.2) we can see Apop = Amom. The explicit
expression of the parameter 6, is obtained as follows by Corollary 1 and the
invertibility condition of IMA models.

0 Ap—4/A2-1 ifn=1or ("—?2+2;V_61"2+3<0a<1 fornZZ)
P Ap+ /A% -1 if0<9a<"2+—2n_2———- ”_61"2+3 for n > 2

7
2
mnA;

hLA.:]. .
e e = T e — T - D(n+ 1) A2

4. THE EXPECTED COST OF THE RATIONAL
SUBGROUPING PROCEDURE

In calculating the expected cost (3.1), we need to derive the AAI and MSD
of the proposed control scheme in Section 3. Then the overall expected cost
function is used to find optimal parameters, such as the subgroup size n, the
sampling interval h, and the action limit L, which produce the minimum overall
cost.

Theorem 4.1. The AAI of the rational subgrouping is obtained as

AAIg = m B[ L/(Ay0,)).
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Proof: Suppose that the last adjustment is made at time tm. Then the next
adjustment should be made at time (¢ + N)m when | pryy41 — Pr41| > L. Here

Dt+N+1 — Peg1 = Ap(beyen + by nv—1 + -+ + beg1).

The action criterion(adjustment rule) is now expressed as
| ute N + Ut N—1 + -+ U] > L/ (Apop),

where the random shocks u; are iid N(0,1). Because h(B) is defined by the
expected first passage time for a standardized random walk with barrier B, E(N)
becomes h(L/Ap,0p). Therefore

AAIR = mE(N) =mh( L/ pop).
a

Notice that the AAlg does not depend on the subgroup size n. From Theorem
4.1 and the fact that A\pop = Ao, we see that AAIr=AAlpk.

Theorem 4.2. The MSD of the rational subgrouping is obtained as
MSDp = a,%{l + X2 g1 L/ (pop)]}
2
o

+ n_%%[%{(m — n)(n2 ~1-3mn)+n(n-1){n+ 1)})%

+ m(n — 1)6’a].
Proof: See APPENDIX. |
From the fact that MSDpk in equation (2.7),

(m —1)A202
2
and A\pop = ApmOm, the difference of MSDpx and MSDpg can be written as

MSDgg = arzn + m)‘go'czz il L/(Amom)] —

-1
MSDpx — MSDR = 0%, — 0} — “— {(4n -+ X2 + 66} o2

By using the expressions of AAIr and MSDpg, in Theorems 4.1 and 3, respec-
tively, the overall expected cost function can be expressed as

Ca nCy Cr

Cr = ot ot ot Lo A9l 2/ e}

2

+ :L‘; [ é—{(m —n)(n? —1—=3mn) +n(n - 1)(n+ 1)}A§

+ m(n — 1)0a] ]
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In Table 4.1, the values of the subgroup size n, which provides the minimum
MSDpg, and the difference of MSDpgg and the minimum MSDp are obtained for
some given values of A\, and m. The function g{-) of (2.8) is used in calculating
MSDp. Note that the value of n to provide the minimum MSDg does not depend
on the action limit L for fixed \q, 62 and m because L/(A\y0p) = L/(v/mAe0,).

Table 4.1 shows that the subgroup size n which produces the minimum MSDpg
is larger than 1 for small and moderate values of A, (< 0.6). We see that the
subgroup size increases monotonically as A, decreases for given m. We also see
that the difference between the two MSD’s increases monotonically as m increases
for given optimal n > 1. This indicates that Box and Kramer(1992)’s procedures
may produce larger MSD than the rational subgrouping with subgroup size n > 1,
and thus their procedure is not optimal in the context of the expected cost.

5. CONCLUSIONS AND REMARKS

APC schemes are designed to minimize the overall expected cost function,
and this minimum-cost schemes depend on the adjustment, the monitoring and
the off-target cost. However because the off-target cost is generally larger than
the other costs, the control method to reduce MSD is very meaningful.

In this paper we generalize Box and Kramer(1992)’s APC procedures by using
the rational subgrouping. In calculating the subgroup size to provide the mini-
mum MSD, we can see that the proposed control scheme gives good performances
in reducing the MSD especially when A, is small or moderate. Determination of
optimal control parameters(the subgroup size, the sampling interval, and the ac-
tion limit) which produce the minimum expected cost in the rational subgrouping
is left as a further study.
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Table 4.1 Values of the subgroup size n which produces the minimum MSDg

>\a m n MSDBK a m n MSDBK
~MSDg —MSDg
5 5 0.098 5 2 0.053
10 10 0.160 10 2 0.077
0.1 20 13 0.236 0.6 20 2 0.092
30 14 0.289 30 2 0.097
40 15 0.330 40 2 0.100
50 15 0.363 50 2 0.102
5 5 0.144 5 1 0.000
10 6 0.221 10 2 0.011
0.2 20 7 0.311 0.7 20 2 0.019
: 30 7 0.364 30 2 0.022
40 7 0.400 40 2 0.023
50 7 0.426 50 2 0.023
5] 4 0.147 5 1 0.000
10 4 0.221 10 1 0.000
0.3 20 5 0.293 0.8 20 1 0.000
30 5 0.330 30 1 0.000
40 5 0.353 40 1 0.000
50 5 0.369 50 1 0.000
5 3 0.127 5 1 0.000
10 3 0.185 10 1 0.000
0.4 20 3 0.233 0.9 20 1 0.000
30 3 0.254 30 1 0.000
40 3 0.266 40 1 0.000
50 3 0.274 50 1 0.000
5 2 0.092 5 1 0.000
10 2 0.127 10 1 0.000
0.5 20 3 0.153 1.0 20 1 0.000
30 3 0.165 30 1 0.000
40 3 0.172 40 1 0.000
50 3 0.176 50 1 0.000
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APPENDIX

Proof of Theorem 4.2. From AAl = mE(N) and Xy, = —pey1/9, the MSD
of (2.5) becomes

1 N )
MSDr = mE(N) E ;;{z(“ﬂ Dm+4j — Pt+1}]
1 N m \
= mEN) E ;;{Ptﬂ P41+ 2(t4i-1)ymyj — pt+i}]
1 N m
- mE(N) E ZZ{I’HZ Pt+1} ]

1j7=1

.,
il
W,
[}

N m 2
Z Z{z(t+i——1)m+j - pt+i} ]

=1 j=1

[ iv: i{pt-ﬂ' — Pr+1 } {Z(t+i—1)m+j - pt+i}] (A1)
=1 j=1

For convenience, let the three terms in the right hand side of (A.1) be denoted
by (T1), (T2), and (T3), respectively. That is, MSDr=(T1)+(T2)+(T3). Then
it is easily seen that

E[

(T1) = o {1+ 22 g L/ (o)l }, (A.2)

by simple algebra and the definition of g(-)(See Kramer(1989, pp. 35 or pp.
86-87)).

In (T2), 2(44i-1)m+; — Pt+i can be written as

Z(t+i—1)m+j — {Z(m)m + Z(t+iym—1 T Tt Z(t+i)m—(n-1)}/ n
~(1/n) SrZo{ #erim-k = Zeriym—(mos) ifm—j>n
= { —(1/n)Th 1{Z(t+i)m k — Z(t+iym— (m-j)}

L +(1/n Zk—m—-g+1{z(t+z)m (m—j) — Z(t+i)m—k} fm—-j<n

—(1/n) [ S+ Da)aggmt
+ 3 “Lna al(t+iym—1 — 0al(t4i)m—(m—j) ]E A ifm—-j5>n
= { —(/n) [ SR+ Da)agimot
—{(m - j)9 +{n-m-1% j)}a(t_,_i)m_(m_j)

~ Ciomegs{(n = 1= DX = babaguimat |2 B Em—j<n,
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where '=’ denotes ’is defined as’. By Wald’s equation the second term becomes
m—n m
(T2) = (1/m) { EA)+ Y E(B2)}
j=1 j=m-n+1
0_2 m—nn—1 m—n-1m—j~1 m—n
_ 2 242 202
- m—;[ (1+z,\a)+z Zn/\a+2n0a
j=1 1=0 j=1 l=n j=1
m-1 m—j-1 m 2
+ C+D)2+ Y {(m—j)ea+(n—m—1+j)}

j=m-n+2Il=m—j+1

In (T3), by the fact that

Ptti — D41 = bei + Ap (bpi—1 + -+ - + b41),

we have

M

{pt+i = P41 } {Z(t+i—1)m+j - pt+i}]

r

M= i
i

fi
5
W,
i
)

M

bei {Z(t+z‘—1)m+ﬂ' P “‘i}]

I

¥ bj'
™=
NIE

-
||
—
.
Il
-

{bt+z' = Opbtti—1 } {z(t+i—1)m+j - Pt+i}] :

Now,

biti — Opbtyio1 = Diyi — Pti-1
n—1 m-—1
= (1/n) [Z(l + 1)t piym—t + Z N (t4iym—1
m+n—1

+ Z {(m+n—l—l))\a—Ga}a(t+,~)m_l].'—:D,
l=m
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then (T3) becomes

9 m—n m
(T3) = ;[ZE( 3 E(D-B)]
j=1 j=m-n+1
20_2 m—nn—1 m—n—1m-—j—-1 m—n
= -2 Y >+ Z }: 22 = 3 n26,A,
mn j=1 1=0 =n j=1
m~-1 m—j-1
+ (1+1X)

2 m-nn-—1 m—n—-1m~j-1

= [ (1+1)? — Z Z 2)\2+Z{202+2n29)\}

+ > Y {e-1-pa-t}{m-1+0r-0+2}].

j=m-n+42l=m—j+1

After some tedious calculations and simplifications, we obtain

C+E = ;—i [%{(m —n)(n? —1-3mn) +n(n-1)(n+ 1)})\?z
+ m(n — 1)9,,]. (A.3)

Combining (A.2) and (A.3), we have the result.
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