Abstract
Saddlepoint approximation to the distribution function of sample mean(Daniels, 1987) is extended to the case of general statistic in this paper. The suggested approximation methods are applied to derive the approximations to the distributions of some statistics, including sample valiance and studentized mean. Some comparisons with other methods show that the suggested approximations are very accurate for moderate or small sample sizes. Even in extreme tail the accuracies are also maintained.
표본평균(sample mean)의 밀도함수(density function)와 분포함수(distribution function)에 대한 안부점 근사(saddlepoin\ulcorner approximation)는 Daniels(1954, 1987), Lugannani와 Rice(1980)등에 의하여 유도되었으며, 이 근사식들의 정확도는 대표본(large sample)의 경우는 물론 소표본(small sample)의 경우에도 매우 뛰어난 것으로 알려져 있다. 최근 Easton과 Ronchetti(1986)는 일반적 통계량(general statistics)의 밀도함수에 대한 안부점 근사법을 제안하였고, 분포함수에 대한 근사로는 밀도함수에 대한 안부점 근사식을 직접 수치적으로 적분하는 방법을 제안하였다. 본 논문에서는 일반적 통계량의 분포함수에 대한 안부점 근사법을 제안하고, 이를 표본분산(sample variance)과 스튜던트화 평균(studentizd mean)의 분포함수에 대한 근사에 적용하였다.