An Approximate Parameter Orthogonality

  • Published : 1998.12.01

Abstract

An approximate parameter orthogonality is defined, which is called an $\alpha$-approximate orthogonality The useful consequences of parameter orthogonality mentioned by Cox and Reid(1987) can be shared by an $\alpha$-approximate orthogonality. If $\alpha\geq1/2$, the consequences of orthogonality and $\alpha$-approximate orthogonality are asymptotically equivalent.

Keywords

References

  1. Differential Geometry in Statistics Amari, S. I.
  2. J. R. Statist. Soc. v.B32 Asymptotic properties of conditional maximum likelihood estimators Andersen, E. B.
  3. Biometrika v.70 On a formula for the distribution of a maximum likelihood estimator Barndorff-Nielsen, O. E.
  4. Inference and Asymptotics Barndorff-Nielsen, O. E.;Cox, D. R.
  5. An analysis of transformation (with discussion) Box, G. E. P.;Cox, D. R.
  6. J. R. Statist. Soc. v.B26 An analysis of transformation (with discussion) Box, G. E. P.;Cox, D. R.
  7. J. R. Statist. Soc. v.B49 Parameter orthogonality and approximate conditional Inference (with discussion) Cox, D. R.;Reid, N.
  8. Mathematical Methods of Statistics Cramer, H.
  9. Biometrika v.63 Conditional likelihood and unconditional optimum estimating equations Godambe, V. P.
  10. Ann. Statist. v.2 Estimating equations in the presence of a nuisance parameter Godambe, V. P.;Thompson, M. E.
  11. Theory of Point Estimation Lehmann, E. L.
  12. Biometrika v.68 A Bayesian approach to transformations to normality Pericchi, L. R.
  13. Approximation Theorems of Mathematical Statistics Serfling, R. J.