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Monotone Likelihood Ratio Property of the Poisson Signal
Distribution with Three Sources of Errors in the Parameterv

Joo—Hwan Kim?
Abstract

When a neutral particle beam(NPB) aimed at the object and receive a small number
of neutron signals at the detector, it follows approximately Poisson distribution. Under
the four assumptions in the presence of errors and uncertainties for the Poisson
parameters, an exact probability distribution of neutral particles have been derived.

The probability distribution for the neutron signals received by a detector averaged
over the three sources of errors is expressed as a four-dimensional integral of certain
data. Two of the four integrals can be evaluated analytically and thereby the integral
is reduced to a two-dimensional integral. The monotone likelihcod ratic(MLR)
property of the distribution is proved by using the Cauchy mean value theorem for
the univariate distribution and multivariate distribution. Its MLR property can be used
to find a criteria for the hypothesis testing problem related to the distribution.

1. Introduction

A beam of neutral particles can be used to estimate the density or mass of an object
(Feller (1970)). A method of discrimination proposed here is to use a neutral particle
beam(NPB) aimed at the object, and a small number of neutron signals are counted at the
detector. Beyer and Qualls (1987) showed that the number of return neutron particles from an
object interrogation for a given dwell time follow Poisson distributon.

The mean return neutron signal A is computed by
Aerl

A= (2 -L. ° 0 > ¥ ¥ E 1

2 R ,2 021 6,¢,¢, E) (1.1

where A is the detector area in mz, € is the detector efficiency, I is the probe current in
amperes divided by 1.602x10™Y coulombs, r is the dwell time in seconds, R is the probe
to object distance in m, \/§o‘1 is the beam half divergence angle, 7 is the object to detector

distance in m, f(0,¢,¢,E) is the mean number of neutrons leaked from the object per
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incident particle and it depends on the mass of the object, E is the probe particle energy in

election volts, @ is the scattering angle, and ¢, ¢ are two angels in the orientation of the
object. (1.1) is a parameter of the Poisson distribution. We will prove the basic theory for
discrimination of object with NPB where certain parameters of the distribution are not known
precisely, but their probability distributions are given.
We may consider three sources of errors or uncertainties in the interrogation of object. The
geometry of the interrogation requires the specification of three angles 8, ¢, and ¢ in (1.1).
Two of these three sources are the two angles involved in the orientation of the object

relative to the platforms and detectors: the azimuthal angle ¢ of the detector and the beam

angle of incidence ¢. The polar angle € of the detector may be measured directly by the
interrogation system. The third source of errors in measurement is the uncertainty about the
location of the axis of the beam relative to the object, ie., tracking and pointing errors(or
aiming errors).

Kim (1995a) made two assumptions for the tracking and pointing errors:

(1) The beam has a circular Gaussian distribution of intensity with standard deviation o;.

This distribution is on a plane perpendicular to the beam axis.
(2) Tracking and pointing errors yield a circular Gaussian distribution of the beam axis

relative to the object center. The standard deviation of the distribution is 0.

Wehner (1987) studied the aiming error distribution of NPB, and the results are applied to
the assumption (2).

Under the two assumptions that neutral particle scattering distribution and aiming errors
have a circular Gaussian distribution respectively, the exact probability distribution of neutral
particles becomes a Poisson-power function distribution. Kim (1995b) proved some properties,
such as limiting distribution, unimodality, stochastical ordering, computational recursion
formula, of the distribution. Kim (1996) also proved monotone likelihood ratio(MLR) property
of this distribution, and studied error rate for the limiting Poisson-power function distribution.
Its MLR property can be used to find a criteria for the hypothesis testing problem. Kim
(1997) also studied the minimum dwell time which is satisfied the specified error rate for the
distribution and an algorithm is developed.

In this paper we add two more assumptions about these three sources of errors.

(3) The angles ¢ and ¢ are distributed over the rectangle [0, 71%[0,2x] with density
Wb, pdpdy, where h is a smooth function. If the points determined by ¢ and ¢ are

uniformly distributed over the sphere, then #(@,¢) = sin(¢)/4n.

(4) The random errors in (2) and (3) are independent.

2. An Exact Distribution with Three Sources of Errors
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We first consider the case of one detector and assume there are no background neutron
signals. We wish to calculate the probability that exactly x neutron counts, x=0,1,2,---,

are received by the single detector in presence of errors. Let us assume that mean return
neutron signal does depend on the tracking and pointing error as well as the orientation of

the object (ie., ¢ and ¢) and that the orientation of the object is uniformly distributed on

the unit sphere. Then the mean return neutron signal A becomes

A=2n '-S- /(0,4 ¢ E)- g @TedCD @.1)
where
s =-Aerl
R A&

and (w;,w;) are coordinates of points on beam cross section. A more detailed description of

this formula is given in the report of the American Physical Society report (1987).

The interrogation of object requires the true value of the parameters in (2.1) to compute the
mean of the Poisson statistics. We assume that the structures of the object are given.
However, the general problem treated in this paper does not require detailed knowledge about
the object. This permits the interrogation problem to be posed in terms of hypothesis testing.
We thus can apply the theory of the Neyman-Pearson test of hypothesis to the problem of
using these return signals.

The probability distribution for the neutron signal received by a detector averaged over the
above mentioned three sources of errors and under the assumption of a Poisson distribution of
counts is expressed as a four-dimensional integral of certain data.

S Y Y e * ~2¢ yyx, —(0f + oD/ 23D dw, duw,
Pain=r [ [ [ ey Ko, )= dp dh, (22

where A is defined in (2.1) and o0y is a standard deviation of the circular Gaussian aiming

error distribution of the beam relative to the object and % is defined in section 1.

We average over the aiming error and uncertainties of angles distribution in (2.1) to modify
discrimination for this errors. In repeated sequential interrogation, the probability in (2.2) leads
to a reasonable and correct modification.

When f in (2.1) does not depend on the orientation of the object and in presence of aiming
errors only, Kim (1995a) studied the probability distribution of exactly x neutron particles are
received by the single detector. Under the two assumptions that neutral particle scattering

distribution and aiming errors have a circular Gaussian distribution respectively, and from the
change to polar coordinates and change of variables, (2.2) becomes

Pl D) = —L—pfx+ 28, 23)
k:x!
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where

k
Ay, k) = fo tV e T gt

is the incomplete gamma function.
It follows that the exact probability distribution of neutral particles in (2.3) becomes a

Poisson-power function distribution (Johnson (1970)). Note that % in (2.3) be the mean
number of return neutron signals counted with the assumption that no errors are made in the
measurement of the parameters and that the beam is perfectly centered on the object.
Beckman and Johnson (1987) give evidence from an experiment that the beam has a
Pearson Type VI distribution of intensity instead of a circular Gaussian distribution of
intensity in assumption (1). This distribution is much heavier in the tails than is the
Gaussian. Kim (1995a) compared a circular Gaussian distribution with a Pearson Type VI

distribution for scattering distribution of the NPB.
Under the four assumptions, (2.2) becomes

.4 2z .
A = & [0 [ ARy, g apay 2.4)

X

Thus two of the four integrals in (2.2) can be evaluated analytically and thereby the integral
i1s reduced to a two-dimensional integral.

3. Monotone Likelihood Ratio Property of the Distribution

In this section we will show that the distribution in (2.4) has a MLR property. It can be
used to find decision rules for hypothesis testing problem (Karlin and Rubin (1956)).

First, we need the Cauchy extension of the mean value theorem given in Buck (1985)
which allows one to use the same mean value for the integrals appearing in a quotient of
integrals. Because this theorem may not be widely known, it is useful to state the special
case of it that we will use.

Lemma 3.1. (the Cauchy extension of the mean value theorem) Let F(x) and G(x) be
continuous functions on the closed finite interval [a, &]. Suppose F and G do not have a

b
common zero. Assume that f G(x)dx+0. Then there exists p with a{u<d such that
a

fa "F(x) dx

b Fu) 3.1
[ 6(x) ax

G(p) -
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We also have need of an expression from Abramowitz (1964) for the incomplete gamma
function as a finite series.

Lemma 32.

. —_ e "x* xj 1 % oty -
y; x)= y g} G+ D), + foy e ’dy (3.2)

(V) n+l

where (x); is the usual raising factorial:

_ [ a1 (x+2) - (x+i—1), i>0
(x); = { 1, 7=0.

The expression in Lemma 3.2 is easily obtained by successive integration by parts. On letting
n—o0, (3.2) becomes

N e & x
v, x) = » ’Z:O G+D); (3.3)

which is convergent for each v>( and for all x. It tums out to be convenient to write (3.2)

in the form

vAvix) _ x % x"

e *x” 1+ (v+1) + (v+1D(v+2) + + (v+1D(v+2)--(v+n)
Vex y
(y) 1 fy . (3.4)

Theorem 3.1. The likelihood ratio of the distribution in (2.4) is monotone and converges to 0

as x—o0; and the Neyman-Pearson test for the hypotheses of Hy: k=t vs. H,: k=d,

when d< ¢, is a left-tail test.

Proof. For the case of one detector when f depends on the angles ¢ and ¢ for fixed polar
angle @, the Neyman-Pearson likelihood ratio of the distribution (2.4) is

[ D, ) ap ay

[ L 2w, ey dsap
where v=x+ £. Applying (3.1) to (3.5) once for each integral, we obtain
£
_ [ £\ Av;d)
L(®) ( 5 ) gl 36)

where d* and #° are the Cauchy mean values for the integrals in (3.5). On substituting (3.3)
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into (3.6), we have

L(x) = e"_‘f( d: )xW: 3.7

where

IS (u+1)

W= Z) : YRR (3.8)
(v+1);

Because each term in the numerator of W is less than or equal to the corresponding term
in the denominator and there is equality only for the first term, we have W<{ 1. Then, under
the reasonable condition that max 44(d/#) <1, we have limL(x)—0 as x—co.

Equation (37) can be used to determine the region of x-space to be searched in the
Neyman-Pearson test. Note that (3.7) involves both " —d" and d" /.

We now show that L(x) is monotone decreasing for all x. We work with the quotient
L(x+1)/L(x). In this quotient there are four integrals. Let d° be the Cauchy mean value

3 n

for the “ d” integrals and let ¢° be the Cauchy mean value for the integrals. We assume

that max 4 4d < min 44! and hence that

max 4,d° < min 44. (39)

Then for every v = x+ ¢, we have!

LasD N fz" MM,@ dpdé L"OLZ"OMM b dédy
£ [ AL wewasas [ - LD g, ) dgay

_ Avt1l;d)  Awst)
Av: d°) Av+1; £ from (3.6).

By the integration by parts for the incomplete function, Av+1;2) =vAv;x)—x"e ", and,
hence

Lix+1) _ vivid) = (d)%e™" Ay f)
L(x) Av; d°) vAv; ) — ()% "¢
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1_ gdo)ve—d"
yrv; d°)
1— (to)ve—t”
vr(v; t°)

<1 from (3.4). (3.10)

Thus L(x) is everywhere monotone decreasing under assumption (3.9).

4. Monotone Likelihood Ratio for the Joint Distribution of the Vector of
Neutron Signals

This section is an extension of section 3 to the general problem of discrimination. The
accomplishment of this section provides algorithms for discrimination with multiple signals
and/or in the presence of three sources of errors. The errors of uncertainties are the object
orientation and tracking and pointing errors are object position relative to the beam.

The return neutron signals observed from £k different time intervals or places are formed

into a vector of neutron signals. Suppose one is given a vector X = (X, X5, >, X;) of a
finite set of quantities X; which are Poisson distributed random variables with different
means. Suppose the mean of the sth signal is

P R R Y S W R (41)
where k; can be computed by the bistatic radar formula in (1.1). The joint distribution of the

signal vector X with three sources of errors is given by

peo= [ [ (S G ) w8, 0202 4ysy

x,~!

—(of+ad)/2d .
where w;=e (“teP/% i1 9.

—(ol+wd/20}

Let u=e and £ =(0,/0,)% Then by the same calculation procedure we used

for the univariate distribution, (4.2) becomes

_ * 2n 4 kj x_1 .
P(x)= f¢=0f¢=0 (Zk,-) ¢ (/Ijl( Zki x,-! )7(2x,-+ f,Zk,-)h(gZS, ¢)d¢d¢’ (4.3)

where 7 is the incomplete gamma function.

Consider the two hypothesis that Hj: “Object is heavy” versus H;: “Object is light”.
Denote k;=t; under Hy and k;=d; (di<t) under Hy.Put v= 2.x;+ £ in (43). Then the
likelihood ratio of the joint distribution in (4.3) is
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V.4 2r ﬁ 2 - '
h P(XIH) B " T % -y .
O T[T L) ) s SR, dhdedd

Applying (3.1) to (4.4), we obtain with d's replaced by the appropriate intermediate values

(4.4)

d'’s and the t's replaced by the appropriate intermediate values s

L(x) = ( ) ( ) 77((‘;‘;‘;")) (45)
Using (3.3) in (4.5), we obtain
() = 11 (a5 ™ 5 w 46)
where
& _(Zd})
pe B DL a

& (3t
20 (v+1);
Again, because each term in the numerator of W is less than or equal to the corresponding
term in the denominator and there is equality only for the first term, we have W<1. Put
A;=max 4 ,d;/t), and A= max;A, Thus, (46) becomes
L(x)<A W. (4.8
We make the assumption that A<1. If for any j, A;>1, we do not use the reading from

XthZd'

that signal. Hence we have
lim I x1 o L(x)=0. (4.9)

Equation (4.8) can be used to determine the region of x-space to be searched in the
Neyman-Pearson test.
We now show that L(x) is monotone decreasing for sufficiently large || x . Let e, be

a E-dimensional vector with the meth component one and the other components zero. From
(4.4), we have

Lix+e.) f¢ g 0( (1) *)dn(Zd) ~** Vvt 1; 5)IC 4, §) didy
L) [T S (L) )t = s SR b
. 2"0( 10607 (310 1 3916 gy
ST () () s s s ) isds

To make (4.10) easier to work with, let us set
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(L1Cd) ") du(5d) =P+ 1; 54) g, $ b,

(Ii[ ) )t 58~V A+ 1; 58) 1, ) s,
Ny = 7 [ T ™) (30 =t 58 o, 9 g,

| o

4 ) (5d) ~Av; 3d) (g, ) dbdd,
and therefore

L(xte, Ny Ny

We choose to write the quotient on the right-hand side of (4.11) in a different form:

Lix+e,,) Nl Nz

We work first with the quotient N;/Dy in (4.12). Let d; be the Cauchy mean values in this
quotient and put d°= 2d;. Then
M _ dn Av+1;d%) _ dn u(l__(i’ligi)
D, d Av;d) a vy(v; d°)

Let # be the corresponding Cauchy mean value for the quotient N,/D, and put t°=2t}’.
Then

(4.13)

N _#_Avitd _ 1 . (4.14)
Dy, Av+LE) V(l_ (#)e”" ) '
v Ay; t°)
Thus, from (4.12), (4.13), and (4.14) we have
. 1_ (dO)Ue—da
__—_L(X+em) — _.d_m. t_o VT(V; do) (4.15)
L(x) d ()% " '
1— o
v A v; t°
Let
M(x) = —Vf_ﬂfl (4.16)
then (4.13) becomes
1
Lix+en) _dyw ¢ 17 @)
Lx) &t 1
M(£%)
_dn MO M1
= s T 417
= W
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where
M) _ Md)-1
M=y ™ -1 (4.18)
and where
M(x) =1+ 2=+ x + o+ -
(v+1) (v+ 1) (v+2) (v+D(v+2)(v+n)
ve'x " =7,
+ i — f y" (4.19)
Equations (4.15), (4.17), and (4.19) then yield
L(x+e, du
L(x) = 2 Ww; (4.20)
where
_d . (&> ! v+ 1Def(d) V7 (7 e -
1+ v+2 oot (v+2)-(v+n) + (V) waq fo y" e dy
W= R LTI . @21)
nt+v_-—y
1+ +2+ RO E Or I () e fyyrreeay
We need to estimate the integrals:
ftoy"”e"ydy and fdoy"”e “dy (4.22)
0 0 ’ )

in (4.21). We refer to Bhattacharjee (1970). The integrands in (4.22), y”

for y{#+ v and decreasing for y>zn-+ v. Hence for

+v_ -3
e)

, are increasing

n+v)> max(#’, d°), (4.23)
the integrals in (4.22) can be estimated by  (#°) "o~ and (d°) *'Tle ™7, respectively.
Now define
_ max 4 4 dm
Then if (4.23) holds and by use of (4.24) we have
L(x+e,)
0< L(x) <A WZ W, (4.25)
where
1+ £ (92 ot @ v+l)
u+1 (v+ 1)(u+2) (v+D(v+2)(v+n) (V) pir
M= 0 2 o\ 1 y (426)
1+ d (@) .t (d)
u+l (v+ 1)(V+2) v+ D+ 2)(v+mn)
and
_d (@ " ! WU y+1)
| R R OVFS) I Gynen S S 3 S
W;: o~ n—1 , 4.27)
14+ —L D)

v+2+ F (v+2)-(v+n)
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W is an upper bound for W, and W is an upper bound for W} provided (4.23) holds.
It is assumed that A<1. If it is not, then the reading of the mth detector is not used. At
this time, our objective is to determine a v, so that for
v> max(yy, max(#,d°) —n), (4.28)
we have
WiWe < WiWEC AL, (4.29)
This is sufficient to ensure that L(x) is eventually decreasing in the coordinate x,,.

Equation (4.29) implies
£ (£)? ()" Wy+1)
(H TOADGT) T A DG+ G T ) ,,Ht")

_d (@) ! Uy+1)
(1+ 7 (V+2)"'(;+") ¥ (V)md") (4.30)
. d" (2 (d)"
<4 l(” T ornGery Tt (u+1)(u+2)---(u+n))
(to)n 1
x(1+ gt (V+2)'--(V+n))'\

On multiplying the inequality (4.30) by ((v) ,41)%/V*(v+1), we obtain a polynomial

inequality in v of degree 2z—1. If we replace the inequality by an equality, we obtain a
polynomial equation. This equation has a real root since its degree is odd. The largest real

root for v may or may not be the desired v, in (4.28). Each example requires investigation.

It is useful to record two special cases of (4.30)3 n=1 and n=2.
For n=1, (4.30) becomes:

(1+———(V’i1)+%)(1+})<A ( (ﬁ:l) ) (4.31)
We rewrite (4.31) in the form
g)=A ( ‘f’H) (1+ Vi1+—t1;)(1+—j;)>o. (4.32)

g(v) has a simple pole at v=—1. The zero of g(v) is

- _ oy 1 1
. AN 1+ a9 (1+t+ t")(1+ d,,)’ s

(1+%)(1+d,,) —A4
provided A '#=(1+1/£)(1+1/d°.
If we have equality, g(v) has no zero. If A ({1 +1/£)(1+1/d°, then since
g(+)<0, there is no vy for (431). If A ~'>(1+1/t°)(1+1/d°), then since g(+0)>0,

the appropriate v, is the V" given by (4.33). This Vp is usually positive.
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For n=2, (4.30) become

I (to)Z 1 d° 1
(1+ i1 T (v+D{(v+2) + (v+2)¢° )(1+ vt2 * (V+2)do) (4.34)
- d° (d°)® £
<A 1(1+ S S (YN ) Gy )(1+ v+ )

Because A ') 1, there exists a v, so that for v v, the inequality (4.34) is satisfied. This
vy is determined by replacing inequality by = in (4.34) and solving the resulting cubic
equation for y. The cubic equation is
gw) = ap+apf+a+a; =0, (4.35)
where
ay =(A ' -1t

a =(A7' =D+ (A= I +5(A T =D -1]E—~ &,
ay =—d (P +[ (A7 =)+ BA =4 d—1]()?

+[ATH@)’+ WA =)@ +8(A T -1 -3]r—(d)*-3d°— 1,
ay =—(d+ DA +[A @) +2(A 7 = D(@)+2(A 1 =2)d°— 2] (#)?

(4.36)

+2[A NP +(24 1 —1D()? 424 -1 d°—1]£— (d°+ 1)

The Cardano formula for the solutions to (4.35) is not enlightening. We note that
g(+ o) =400, We do not know whether the largest real zero of g(v) is positive, negative,
or zero. We simply record for example that for A=0.5, ¥°=20, and &°= 10, the largest real
solution to (4.35) is v=—0.2195--.

This completes our discussion of the monotonicity of L(x). Relation (4.30) provides the
basis of an algorithm for determining for each coordinate a yy= in-i- # beyond which
L(x) is monotonic decreasing in that coordinate. We should remark that we could have

applied the Cauchy mean value theorem to the right-hand side of (4.8) as it stands. However
the estimate obtained does not seem to be very useful.

5. Summary

We study the followings:

1) The probability distribution for the neutron signal received by a detector averaged over
the above mentioned three sources of errors is expressed as a four-dimensional integral of
certain data. We show that two of the four integrals can be evaluated analytically and thereby
the integral is reduced to a two-dimensional integral.

2) We calculate and investigate the likelihood ratio of the distribution for univariate signal
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and multiple signals. Under the reasonable condition, the distribution of univariate signal has a
monotone likelihood ratio.

3) For multiple signals, (4.8) measures the “size” of L{x) and (4.30) measures the
monotonicity of L(x). The resulting algorithm is then used to determine bounds on the
rejection region in Neyman-Pearson test of hypothesis.
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