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A Statistical Control Chart
for Process with Correlated Subgroups
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Abstract

In this paper a new control chart which accounts for correlation between process
subgroups will be proposed. We consider the case where the process fluctuations are
autocorrelated by a stationary AR(1) time series and where n(=1) items are sampled
from the process at each sampling time. A simulation study is presented and shows
that for correlated subgroups, the proposed control chart makes a significant
improvement over the traditionally employed X-bar chart which ignores subgroup
correlations. Finally, we illustrate the proposed chart by comparing the standardized
residuals and X-bar chart on a data set of motor shaft diameters.

1. Introduction

Statistical process control techniques are widely used in industry for process monitoring and
quality improvement. Various statistical control charts have been developed to monitor the
process mean and variance. Traditional statistical process control methodology is based on the
independence assumption between the process subgroups. However the process subgroups are
not always statistically independent from each other. In the continucus industries most process
data are autocorrelated. For example, current automated measurement and recording
technology, subgroup samples may be taken with high frequency, and with consecutive
samples being similar in nature. The motor shaft diameter data of Devor et al.(1992) shows
that the autocorrelation between process subgroups occur when items made by a worker
exhibit similar characteristic due to the way that the machine is handled, and the process data
shows seasonal patterns due to materials or weather, or the alertness of a work changes over
time.

It has been shown that subgroup correlations markedly affect the performance of a
Shewhart control chart. Padgett et al.(1992) demonstrated that the true probabilities of at least
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one sample statistic exceeding the control limits differ from those calculated under the
assumption of independent subgroups. Many authors including Spurrier and Thombs (1990),
Harris and Ross(1991), Alwan(1992), Yaschin(1993), Superville and Adams (1994), Wardell et
al.(1994), Tatum(1996) and Zhang(1998) investigated the control charts for correlated process.
But, most of the above authors investigate the case where one measurement is sampled from
the process at each sampling time. In these cases, a typical approach to monitoring correlated
processes is to fit an ARIMA time series model to the process data and then monitor
one-step-ahead forecasts with a control chart such as X-bar chart, CUSUM chart.

In this paper, a subgroup of #(=1) measurements is sampled from the process at equally
spaced points in time. We will propose and investigate a new control chart for this situation.
The performance of the proposed chart will be compared to the standard Shewhart X-bar
chart which ignores subgroup correlations. The proposed control chart will be developed in
section 2. Through the simulation study, its performance will be investigated in section 3. An
example will be presented in section 4. Finally, we summmarize this paper with conclusions.

2. A Proposed Control Chart

Suppose that at each time ¢, a measurement sampled from a process is given by
Xi= pte; t=12,-k, j=12,,n, (1
where {#) and {e,} are independent zero mean Gaussian processes. Here, g, is mean of
process at time ! that fluctuates randomly with ¢, and ¢4(j=1,2, -, n) are measurement
errors at time I We also assume that variance of &, is Og( Thus conditional upon the
process mean is g, at time I, the subgroup sample {X; 1<j<#s} is an independent
identically distributed Gaussian random sample with mean g, and variance 0‘3(
The process fluctuation '{ﬂ 4 is assumed a stationary causal first order autoregressive
(AR(1)) time series which is defined by
u=Qut+a (2)
where |@1<1 is assumed for stationarity and causality of {x, and {ag is an independent
identically distributed mean zero Gaussian random sequence with variance o‘?, that is
independent of {e&g}.
Since E[X;]=0 for all ¢ and j, the correlation between the process measurements at time

! and s (s+9 is given by
@ g2
+(1— 0%k

Corr( Xy, Xg) = 2
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when 1=<7,7<n. This correlation is nonzero whenever @ (. From this, the model (1) allows
for correlated subgroups. Moreover, the correlation between process subgroups decays at a

geometric rate to zero as the lag between subgroups approaches infinity. From Corr( Xy, X;)
#(0 for 7#j, we note that the subgroup {X,, 1<j<n} is not independent. In fact, it is only
conditionally independent.

Now, we define the subgroup measurement mean and error mean at time [ respectively,

—thﬁ_)_(i ’ Et=£ﬂ

=1 n =17

as follows

Then from the equations (1) and (2), we obtain

X;=u+ &, and u,=0pu,_+a, , (3)
which is the Kalman filter equations. Manipulation with (3) provide

X—@ Xio1= &— &1t a .
That is, { _)—(, } is ARMA process. Although{ 7(, } is stationary, it is not easy to fit the
process measurements. Thus we will use the Kalman filtering forecasting techniques to

develope a control chart for this process. The first two moments of { X, } are easily obtained

as follows.
— _ 2 3
E[ X,]=0 , and Var[ X,]=1_—‘(IDZ‘+7 .
Let /,/z\,=E[,u,| 7(1, 7(2, S 7(,] be the best mean squared error predictor of g,
based upon —)Z'l R Yz, .« .., 7(1 and define its prediction error as
v%=E[(/;\t_ﬂt)2| 321,7(2, s ',7(,] . (4)

From the Kalman recursion(Brockwell and Davis, 1996), the best mean square error predictor

of p, is given by

;‘\t= @ :‘\‘t—1+kt( 3-(:_(3 //\lt~1) . )
where
pm — 2 Vm1+ )
ol t 0%t + A
To compute the quantities in (4) ~ (6) iteratively in ¢ we update »? with

) _ 1 'x(@%  + )
U TR+ O+

(7

and begin the iterations with =0 and vi=d%/ (1— @2).

Now, as the one step ahead prediction residual for process sample means at time {, we can
define the control chart as follows
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R, = }t_E[ th’ )_(1, —Xz. T, yt—ll
- ~ ®
= X— 0 pi

A large R, in absolute value is associated with a process that is out of control. From (3) and
(3),
Ri=p—@ 7‘:—1“" Et 9

This {R,} is also mean zero Gaussian process and the conditional variance of R, given

X, + -, X,_, obtain as follows.
O'Rlzz Var{R,I 7(1, Xg, Ty, Y¢_1]=O%+ @21)%_1+0%(/7l . (10)
In fact, o‘R,z does not depend on 7(1, <., ?(,_1. Thus the standardized residuals,

Zt=Rt/GR, (11)
are independent identically standard normal random variables. If all values of the parameters
are known, {Z,;} can be used to monitor the process.

This monitoring method is the proposed control chart for process. Although the values of
the parameters are seldom known in practice, it is not difficult to estimate the parameters by

using the maximum likelihood method. The usual 30 control limits can be applied to this
control chart. That is, the process is out of control at time ¢ if |Z,|>3. It is obvious that
the probability of a "false” out of control signal at any time ¢ is P[|Z,|>el=0.0027.

To investigate the performance of the proposed control chart we compare our results to those
in Padgett et al.(1992) by using the @, -risks. The @, -rtisk is the probability of obtaining at
least one false out of control signal in a process where #% total subgroups, each of size #» ,
are observed when the process is actually in control. Hence the a, -risk can be viewed as
the overall false alarm rate for a control chart of % subgroups and is analogous to a type I
error probability.

Computations with the standard normal distribution show that @;=0.0027. If the
parameters are known and the subgroups are independent, then a,-risk can be computed
from the binomial distribution. That is,

a=1-(1—a)* (12)
Padgett et al.(1992) demonstrated the gross inadequacies of using (12) when process sub-
groups are correlated.
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3. Simulation Study

In this section we investigate the performance of the proposed control chart through the
Monte Carlo simulation. To study a variety of correlation properties between the subgroups,

we examine four different parameter sets of @, 62 and 02X Sample a,-risks will be
simulated for a variety of choices of the subgroup numbers % and the subgroup size #, and

compared to the results reported in Padgett et al(1992) where a Shewhart chart was applied
to correlated subgroups without accounting for subgroup correlations.

Table 1 shows sample @,-risks for the parameters @ =0.5, 02=0.375, 0% =0.50 and for
each and £=20,25,30 and 50 and #=3,4,5 and 6. The values of o> and % were
selected to make Var( X,)=1 when n=1. And the values of # and £ reflect subgroup
sizes that are typically encounted in practice. All sample a,-risks are computed from 2000
simulations. The sample a,-risks are the proportion of simulations where Z, exceeds 3 in
absolute value for at least one 1 satisfying 1<¢<k.

We first note that sample a,-risks computed with the exact value of the parameters are very
closed to the theoretical a,-risks for normal data in Table 5. Hence, we find that the
proposed control chart is functioning well. We contrast this results to Table 6 - 10 of Padgett

et al(1992). Their tables show that the sample a,-risks are closed to unity when a

traditional Shewhart X-bar chart, unmodified for subgroup correlation, is used. From these
facts, we obtain that the proposed control chart shows a clear improvement over a traditional
Shewhart X-bar chart when subgroups are correlated.

Table 2 - 4 show sample a,-risks for the same values of %k and # and different choices of

?, o‘g( and o‘?, These three tables show a similar structure to Table 1. The value

@ =—0.5,—0.8 in Table 2 and Table 4 provides negative correlation between subgroups.

4. An Example

In this section, we apply the proposed control chart to the motor shaft diameter data of
Devor et al(1992, pp 186-188). This data has process subgroups of size #=05 observed at
k=060 sampling times separated by 30 minutes each. Figure 1 plots the sample mean motor
shaft diameter at each sampling time and the traditional Shewhart X-bar chart upper and
lower control limits, computed assuming independent subgroups. From Figure 1, we know that
process sample mean fall out side of the control limits for subgroups 28 and 30. Hence a
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traditional Shewhart X~bar chart would signal "out of control” for this process.

To fit the proposed model (3) to this data, it need to know the values of the parameters.
Since {Zt} are independent identically standard normal random variable, we obtain the log
likelihood function as follows.

InL(s, ¢,02,0% | X, -, X,)=—InQn) - 2,03?:‘% :212%

From above equation, we can obtain the maximum likelihood estimates Zz\, $ 5: and 5%(

by numerical method. For computationally convenience, we use the EM algorithm. For the

motor shaft diameter data, we obtain the parameter estimates u©=48.31, $=0.74, <;3=2.59

and g?(=38.62 . The value of ¢ strongly suggest that the process subgroups exhibit

positive correlation.
To assess the performance of the proposed process model for this data, we examine the

estimated standardized residuals {Z} plotted in Figure 2. The estimated standardized

residuals in Figure 2 all lie inside the control limit *=3 . Hence, contrary to a traditional
Shewhart X-bar chart, the proposed chart for correlated subgroups does not signal that the
process is out of control. We also note that the estimated standardized residuals in Figure 2
follow a similar pattern as the Shewhart X-bar chart in Figure 1, but have a smaller
variability.

5. Remarks and Conclusions

This paper presents a new control chart that account for subgroup correlations in the case
where multiple observations are sampled from the process at each sampling time. Specifically,
the case where process mean fluctuations are governed by an AR(l) time series is explored.
Extensions to more general time series may be considered.

This paper also show that by modeling rather then ignoring subgroup correlations, a more
efficient control chart can be achieved. This improved chart acts to greatly minimized the
number of unwarranted process shut-down. From the simulation study, the proposed control
chart greatly improved upon a Shewhart X-bar chart that ignores subgroup correlations.
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Table 1 a,-risks for @ =0.5, 0%=0.50, 62=0.375
20 25 30 50
n
3 0.0435 0.0710 0.0830 0.1255
4 0.0520 0.0645 0.0730 0.1410
5 0.0575 0.0615 0.0855 0.1210
6 0.0480 0.0715 0.0840 0.1185
Table 2 a,-risks for @ =-0.5, 0%=0.50, 2=0.375
20 25 30 50
3 0.0465 0.0665 0.0770 0.1120
4 0.0505 0.0650 0.0750 0.1265
5 0.0605 0.0750 0.0755 0.1335
6 0.0540 0.0645 0.0910 0.1225
Table 3 @,-risks for © =0.8, o%=0.50, 5=0.315
20 25 30 50
3 0.0495 0.0580 0.0830 0.1190
4 0.0645 0.0665 0.0745 0.1205
5 0.0470 0.0800 0.0735 0.1140
6 0.0470 0.0665 0.0795 0.1195
Table 4 a;-risks for @ =—0.8, o0%=0.50, c>2=0.315
20 25 30 50
3 0.0505 0.0645 0.0750 0.1310
4 0.0435 0.0770 0.0840 0.1195
5 0.0470 0.0600 0.0890 0.1375
6 0.0640 0.0645 0.0775 0.1115
Table 5 Theoretical a@,-risks.
k 20 25 30 50 100
ay 0.05263 0.06535 0.07790 0.12643 0.23688

379



380 Kwang Ho Lee

60

133

50

Se0%

4S5

40

35 T T T T T T T T 1 T T 1 T
0 5 10 15 20 25 30 35 4o ys 50 55 60
Sampling time
Figure 1. Shewhart X-bar chart for motor shaft diameter data.
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Figure 2. Estimated standardized residuals chart
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