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Abstract

Factorial designs with two-level factors represent the smallest factorial experiments.
The system of notation and confounding and fractional factorial schemes developed for
the 2V system are found in standard textbooks of experimental designs. Just as in
the 2V system, the general confounding and fractional factorial schemes are possible
in 3N, 5N, .. , and j)N where p is a prime number. Hence, we have the pN
system. In this article, the author proposes a new algorithm for constructing fractional
factorial plans in the pN system.

1. Introduction

The notion of factorial experiments was formally introduced into the scientific literature by
R.A. Fisher in 1926. The basic idea was to study a set of factors affecting some phenomenon
by varying combinations of factors in prescribed patterns. Prior to this ground-breaking paper,
the standard approach in the scientific world had always been to study factors one-at-a-time.
The scientist would very carefully hold conditions constant and then systematically study the
factors one-at-a-time. This innovative idea, factorial experiments, has been taken up,
developed, and extended by many statisticians and scientists. Some of the other early
contributors to the statistical theory of factorial experiments were Yates (1937), Bose and
Kishen (1940), and Bose (1947).

In its simplest form, a factorial experiment includes experimental runs with all possible
combinations of levels of all factors considered. The total number of experimental runs is the
product of the number of levels for each of the individua! factors. When the experiment
involves many factors, or factors at many levels, this leads to the obvious problem that a full
replicate of the experiment becomes very large. The experiment becomes too large in two
senses. The experimenter may have difficulty finding enough experimental material that is
sufficiently uniform for the experiment, or the experimenter cannot afford the large number of
experimental runs required. Fisher (1935) proposed blocking to avoid the first problem.
Heterogeneity among experimental units increases experimental error. By blocking,
experimenters can remove unwanted sources of variability among experimental units, and
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thereby reduce the error.

The fundamental idea in blocking is to group experimental units into batches, called blocks in
a manner that makes units within blocks as uniforrmn as possible. Treatment combinations are
then assigned within blocks to take advantage of this increased uniformity.

Finney (1945) devised the concept of fractional factorial experiments to get around the second
problem. The fundamental idea in fractional factorial experiments is to examine a subset or
fraction of the set of all possible treatment combinations. The challenge is to select the subset
so that the responses to the resulting subset of treatment combinations can be interpreted
easily. The usual strategy is to pick the fraction so that main effects and low-order
interactions are retained and high-order interactions sacrificed.

2. The Fractionation Concept

To illustrate the fractionation concept involved without too much complexity, let us consider
a small study, an experiment with selecting four observations from a 2% factorial plan, where
the factors are A, B, and C, that is a 237!, or in other words a half replicate of the 23
treatment combinations. For example, to select a half replicate, one chooses an effect, or more
commonly an interaction to define the fraction, say ABC and then retains either the set of
treatment combinations that enter the definition of the interaction with a positive sign or the
alternative set of combinations that enter with a negative sign. Common practice is to
formally represent these two alternate fractions by the symbols I=+ ABC and I=— ABC.

The first fraction 1is obtained by selecting treatment combinations for which

x4+ xg+xc=1 (mod 2) and the second by selecting treatment combinations for which
xa+xp+xc=0 (mod 2). Now consider more complex example, an experiment with

selecting eight observations from a 2° factorial plan, where the factors are A, B, C, D, and E,

that is a 25_2, or in other words one fourth replicate of the 2° treatment combinations. To
select a half replicate, one chooses an effect, or more commonly an interaction to define the
fraction. For example, = ABC specifies a half replicate. To reduce down to one fourth
replicate we must select another defining contrast. Choose CDE as another defining contrast.
The defining relation is = ABC= CDE= ABDE. Note ABDE is the generalized interaction
of ABC and CDE. Finally one must obtain the actual fraction, the actual set of treatment
combinations, that are to be used by the scientist. There are numerous ways of approaching
the job of finding a set of treatment combinations. One way to do this is to think of the set
as the solutions to the equations xs4+xg+xc=1 (mod 2) and xc+xp+xg=1 (mod 2).
We must obtain solutions to the system of equations by modular arithmetic. Modular
arithmetic is a simple computation by remainder. (mod 2) can have the value O or 1 since a
number is divided by 2 and the possible remainder is 0 or 1. Similarly, (mod 3) generates 0,1,
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and 2. But the more generators, the harder solving equations. For example, the 210=5 plan
needs to solve the system of five equations. When the number of generators are increased,
solutions may practically not be obtained without help of computers.

3. A Simple Algorithm for Factorial Designs

In order to solve the system of equations, a new algorithm is developed in this article. It
can be easily implemented by using various computer languages. Especially, some
sophisticated programs such as SAS, S-plus or some other statistical package programs
require several lines of commands to implement this algorithm.

To illustrate the concept of the algorithm, consider 2% factorial designs since factorial
designs with two-level factors represent the smallest factorial experiments. As a simple

example, consider a half fraction of a 2% factorial design which is defined by the interaction

ABC. The actual plan for a complete replicate of a 23 factorial plan consists of 23 treatment
combinations, all possible combinations of the two factors, each at two levels.

The algorithm we propose is based on modular and integer functions. The construction of a
fractional factorial design by using this algorithm is straightforward. All we have to do is

generating a full replicate of pN factorial and selecting a subset or fraction of the set of all
possible treatment combinations. For convenience, denote the modular function a mod b as
mod(a, ). Since we have three factors, we need to establish three functional generators.

For the first factor, mod(7,2) is obvious choice since the solutions of i mod 2 are within a

set F, of elements 0, 1 where 1 is an integer, { <:< 23— 1. Similarly, mod(z',Zz) generates

a set F, of elements 0, 1, 2, 3 for the second factor. By the same way, mod (7,2°) produces a
set Fj of elements O, 1, .., 7. All three sets should belong to the Galois Field, GF(2), since
two-level factors are considered. However, the sets F, and Fj3 are not in GF(2). To convert
them to ones in GF(2), we select proper divisors, and apply integer functions to their results.
Consequently, the full replicate of the 2% factorial design is constructed by using three
modular functions mod (7, 2), integer(mod(7,2%)/2) and integer(mod(s,2%)/2%). From this full
replicate, the final fraction can be found by selecting treatment combinations that satisfies the
equation x4+ xg+xc=1 (mod 2).

The idea illustrated in this example can be extended to the experimental situation with N
factors. The system of the algorithm for confounding and fractional factorial schemes

developed for the oN system extend directly to the pN system, for any prime number p.

The details of the general confounding and fractional factorial method for the pN system can
be found in standard textbooks such as P.W.M. John (1971), Anderson and McLean (1974),
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Raghavarao (1971), Raktoe, Hedayat, and Federer(1981), and Das and Giri (1986).

Algorithm

1. The number of factors N > 0, where N are integers, and p is a prime number.

2. Construct a full replicate by using modular and integer functions;

Doi=0to p"—1
Factorl=mod(i, p)
Factor2=integer(mod(i, p°)/ p)
Factor3=integer(mod(i, $°)/ p*)

FactorN=integer(mod(i, p" )/ p" 1)

End

3. Choose a fraction from the above full replication that satisfies the system of equations.

4. Examples

4.1 2% Factorial Experiments

41.1 Example 1

Consider one fourth replicate of a 2° factorial plan that is composed of 8
n example, generate a fraction defined by 1=ABC=CDE=ABDE.

SAS program:

observations. As a

data all ;

doi=0to 31;
A = mod(,2);
B = int(mod(i,4)/2);
C = int(mod(i,8)/4);
D = int(mod(i,16)/8);
E = int(mod(i,32)/16);

output;
end;

data frac; set all;

if (mod(A+B+C,2) ne 1) then delete;
if (mod(C+D+E,2) ne 1) then delete;
proc print; var A B C D E; run;

SAS output:
TRT A B C D E
1 0 0 1 0 0
2 1 1 1 0 0
3 1 0 0 1 0
4 0 1 0 1 0
5 1 0 0 0 1
6 0 1 0 0 1
7 0 0 1 1 1
8 1 1 1 1 1
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4.1.2 Example I

Consider the problem of putting a 9° factorial in 8 blocks of size 4 in a complete replicate.
A reasonable choice for the first contrast to be sacrificed is ABCD. For the second generator,
one can select BDE. This implies that ABCD XBDE=ACE is also confounded. Now for the
third generator, select ADE. This implies that BCE, AB, and CD are also confounded. In order

to put the 2% factorial into eight blocks of size four we need to confound a total of seven
contrasts. These result from selecting three generators and then finding all their generalized

interactions.
SAS program: SAS output:
data all;
doi= 0 to 31, TRT BLOCK A B C D E
A = mod(,2);
B = int(mod(i,4)/2);
C = int(mod(i,8)/4); 1 1 0 0 0 0 0
D = int(mod(i,16)/8); 2 1 1 1 0 0 0
E = int(mod(i,32)/16); 3 1 1 0 1 1 0
output; 4 1 0 1 1 1 0
end; . . . . .
data frac; set all;
block=mod(A+B+C,2)+2*mod(C+D+E,2)+1; ) . . . . . )
proc sort; by block; 32 4 1 1 1 1 1
proc print; var block A B C D E; run;

4.2 3% Factorial Experiments

4.2.1 Example 1

Consider a 3% factorial experiment in three blocks of size three for a one complete replicate

by confounding AB? In order to obtain the intra block subgroup, consider the following
program.
SAS program: SAS output:

TRT BLOCK

o

data all;
do i

0 to &;
A = mod(i,3);
B = int(mod(i,9)/3);
output;
end,
data frac; set all;
block=mod(A+2+B,3)+1;
proc sort; by block;
proc print; var block A B; run;
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422 Example 1

In order to find one-third fraction of a 32 factorial experiment, a simple modification of the

above SAS program is needed.

SAS program: SAS output:
data all;
doi=0to8
A = mod(i,3); TRT A B
B = int(mod(i,9)/3);
output; 1 0 0
end; 2 1 1
data frac; set all; 3 2 2
if (mod(A+2*B,3) ne 0) then delete;
proc print; var A B; run;
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