GEODESIC EQUATIONS OF TWO-DIMENSIONAL FINSLER SPACES WITH (${\alpha},\;{\beta}$)-METRICES $L\;=\;{\beta}+\{frac{\alpha^2}{\beta}\;AND\;L\;=\;{\alpha}+\frac{\beta^2}{\alpha}$.

  • Lee, Il-Yong (Department of Mathematics Kyungsung University) ;
  • Choi, Eun-Seo (Department of Mathematics Yeungnam University)
  • 발행 : 1998.09.01

초록

We can obtain the concise description of two dimensional Finsler space from the viewpoint of their geodesic curves. In this paper we obtain the geodesic equations in a two-dimensional Finsler space with some special (${\alpha},\;{\beta}$)-metrics by using the Weierstrass form. We shall be referred to an isothermal coodinate system and an orthonormal one with respect to an associated Riemannian space.

키워드

참고문헌

  1. The Theory of Sprays and Finsler spaces with Applications in Physics and Biology P.L.Antonelli;R.S.Ingarden;M.Matsumoto
  2. Pub. Math. Debrecen v.51 On Finsler spaces of Douglas type. A generalization of the notion of Berwald space S.B$\'{a}$cs$\'{o}$;M.Matsumoto
  3. J. Korean Math. Soc. v.10 On Landsberg spaces of two dimensions with(α,β)-metric M.Hashiguchi;S.H $\={o}$j$\={o}$;M.Matsumoto
  4. J. Hokkaido Univ. Education Sect.ⅡA v.46 On Finsler spaces with(α,β)-metric. Regularity, Geodesics and the main scalars M.Kitayama;M.Azuma;M.Matsumoto
  5. Reports on mathematical physics v.31 Theory of Finsler spaces with(α,β)-metric M.Matsumoto
  6. Mathl. Comput. Modelling v.20 Geodesics of two-dimensional Finsler spaces M.Matsumoto
  7. Open System and Inform. Dynamics v.3 Every path space of dimension two is projectively related to a Finsler space M.Matsumoto
  8. Revue in Roumania Pure and Applications Equations of geodesics in two-dimensional Finsler spaces with(α,β)-metric M.Matsumoto;H.S.Park
  9. Tensor, N.S. v.39 Projective changes of Finsler metrics and projectively flat Finsler spaces M.Matsumoto
  10. Tensor N.S. v.56 On a Finsler space with a special (α,β)-metric H.S.Park;E.S.Choi