초록
For the performance analysis and traffic control of ATM networks carrying video sequences, need an appropriate video traffic model. In this paper, we propose a new traffic model for MPEG compressed videos which are widely used for any type of video applications at th emoment. The proposed modeling scheme uses scene-based traffic characteristics and considers the correlation between frames of consecutiv GOPs. Using a simple scene detection algorithm, scene changes are modeled by state transitions and the number of GOPs of a scene state is modeled by a geometric distirbution. Frames of a scene stte are modeled by mean I, P, and B frame size. For more accurate traffic modeling, quantization errors (residual bits) that the state transition model using mean values has are compensated by autoregressive processes. We show that our model very well captures the traffic chracteristics of the original videos by performance analysis in terms of autocorrelation, histogram of frame bits genrated by the model, and cell loss rate in the ATM multiplexer with limited buffers. Our model is able to perrorm translations between levels (i.e., GOP, frame, and cell levels) and to estimate very accurately the stochastic characteristics of the original videos by each level.