Abstract
This paper presetns an adaptive critic self-learning control system with cerebellar model articulation controller (CMAC)-based decoder integrated with the associative search element (ASE) and adatpive critic element(ACE)- based scheme. The tast of the system is to balance a pole that is hinged to a movable cart by applying forces to the cart's base. The problem is that error feedback information is limited. This problem can be sloved when some adaptive control devices are involved. The ASE incorporates prediction information for reinforrcement from a critic to produce evaluative information for the plant. The CMAC-based decoder interprets one state to a set of patways into the ASE/ACE. These signals correspond to te current state and its possible preceding action states. The CMAC's information interpolation improves the learning speed. And design inverted pendulum hardware system to show control capability with neural network.