CORDIC을 이용한 디지탈 Quadrature 복조기의 VLSI 구현

VLSI Implementation of CORDIC-Based Digital Quadrature Demodulator

  • 남승현 (고등기술연구원 전자통신연구실) ;
  • 성원용 (서울대학교 전기공학부)
  • 발행 : 1998.07.01

초록

디지탈 quadrature 복조기는 디지탈 통신 시스템에서 변조된 신호의 정확한 위상 복조를 위해 꼭 필요하다. 기존의 방법들은 주로 DDFS(Direct Digital Frequency Synthsizer)를 이용하여 캐리어를 발생시킨 후에 승산기를 이용하여 복조를 수행하였다. 그리고, DDFS에는 주로 ROM(Read Only Memory)을 사용하였는데, 높은 속도와 정확도를 요구하는 경우 ROM의 속도와 크기가 제한이 될 수있다. 이러한 점을 극복하기 위하여 CORDIC(COordinate Rotation Digital Computer) 알고리듬을 사용하여 주파수 합성은 물론 캐리어 복조까지 수행하는 방식을 제안하였다. 최적의 하드웨어 구현을 위해 제한된 단어길이에 의한 영향을 분석하였으며, 하드웨어 비용면에서 ROM을 사용하는 방법과 비교한 결과 약 1/3 정도로 면적이 줄었다. 제안된 구조를 이요한 전주문형 VLSI 구현 결과를 보인다.

Digital quadrature demodulator is needed for the coherent demodulation in the digital communication systems such as Binary Phase-Shift-Keying, Quadrature Phase-Shift-Keying, and Quadrature Anmplitude Modulation. Conventaionally, the DDFS (Direct Digital Frequency Synthsizer) is used for generating the carrier signal and seperate multi-pliers are used for mixing. And the DDFS is implemented using the ROM (Read Only Memory), which can be a bottle-neck neck when the fast-speed and small-area implementation is required. A new architecture is developed, which employs the circular rotation mode of the CORDIC algorithm for signal mixing as well as carrier generation. To optimize the hardware design parameters, the finiteword-length effects of the proposed implementation arachitecture are analyzed in comparison with a conventional ROM-based architecture. The hardware costs are also estimated, which showed that the proposed architecture occupies only a third of the area of the conventional ROM-based architecture for the same performance. A full-custom VLSI is developed using the proposed architecture.

키워드

참고문헌

  1. Digital Communication MA 02061 Edward A. Lee;David G. Messerschmitt
  2. Digital Communications John G. Proakis
  3. IEEE J. Selected Areas Com-mun. v.11 no.7 Performance analysis of an all-digital BPSK direct-sequence spread-spectrum IF receiver architecture Bong-Yang Chung;Charles Chien;Henry Samueli
  4. IEEE J. Solid-State Circuits v.27 no.1 Computer-aided de-sign of a BPSK spread-spectrum chip set Rajeev Jain;Henry Samueli;Paul T. Yang;Charles Chien;Gloria G.;Chen, Linda K.;Lau, Bong-Young Chung; Etan G. Cohen
  5. IEEE J. Solid-State Circuites v.30 no.3 A 200 MHz quadrature digital synthesizer/mixer in 0.8-μm CMOS Loke Kun Tan;Henry Samueli
  6. IEEE J. Solid-State Circuits v.26 no.11 A 540-MHz 10-b polar-to-cartesian converter Gerard Gielis;Rudy van~de Plassche;John van Valburg
  7. IEEE J. Solid-State Circuits v.26 no.12 A 150-MHz direct digital frequency synthesizer in 1.25-μm CMOS with -90-dBc spurous perfor-mance Henry T. Nicholas Ⅲ;Henry Samueli
  8. ISSCC 1995 Digest of Technical Papers A sine/cosine direct digital frequency synthesizer using an angle rotation algorithm Avanidra Madisetti;Alan Kwentus;Jr. Alan N. Willson
  9. IEEE Trans. on Signal Processing The quantization effects of the CORDIC algorithm Yu Hen Hu
  10. IEEE Signal Processing CORDICI-based VLSI architectures for digital signal processing Yu Hen Hu
  11. STANFORD TELECOM Digital, Fast Acquisit-ion, Spread Spectrum Burst Processor STEL200A, ASIC Custom Producs Division
  12. I-Micron Cell Compiler Library VLSI Technologies, Inc.
  13. VSC370 Library VLSI Technologies, Inc
  14. Proc. IEEE ICASSP '97 A fast direction sequence generation method for CORDIC processors Seunghyeon Nahm;Wonyong Sung