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Application of Boundary-Fitted Coordinate System to the Wave

Propagation in a Circular Channel
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Abstract[] The paper deals with the application of Boundary-Fitted Coordinate System (BFCS) to the two wave
models of parabolic and hyperbolic types developed on a rectangular grid system. Since the BFCS conforms the
boundaries of the region in such way that boundary conditions or calculation process can be accurately represented,
improvement in predicting the wave fields can be achieved. The numerical results show a good agreement with the
analytical results for either waves propagating or reflecting along a circular channel of constant depth. Simulation
of reflecting waves in a parabolic wave model is accomplished by the backward calculation as if waves
approached at the cross wall take a turn in the opposite direction and propagate against a channel.
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1. INTRODUCTION by using the boundary-fitted grid system to a

complicated region. The interest in numerically-

The parabolic approximation method in solving wave
phenomena is known to have a great merit as time-
saving method. However, the method shows a
disagreement for the wide angle and behind the
structures since the numerical scheme used proceeds
grid by grid along a main axis. When waves propagate
through a turning channel, this disagreement also
occurs due to the turning angle of wave propagation
and the zigzag boundaries on the Cartesian methods.

The improvement for this disagreement is accomplished

generated, Boundary-Fitted Coordinate Systems (BFCS)
has arisen from the need for conforming the boundaries
of the region in such way that boundary conditions can
be accurately represented.

Several investigators such as Liu and Boissevain
(1988), Kirby (1988), and Dalrymple and Kirby (1994)
have employed the BFCS to propagating wave fields;
Liu and Boissevain (1988) applied a non-conformal
transformation to waves between two breakwaters.

Kirby (1988) examined Liu and Boissevain's model by
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constructing the parabolic approximation in the
transformed space. Recently, Dalrymple and Kirby
(1994) developed the forward-propagation equations
for Fourier-Galerkin and Chebyshev-Tau models in
conformal domains, and compared the results to the
exact solutions of waves in a circular channel. There
was another recent work on wave propagation through
circular rubble-mounded jetties done by Melo and
Gobbi(1998). In this study we develop two wave
models by mapping the wave equations of hyperbolic
and parabolic types through the boundary-fitted
coordinate transformation and compare the model results
to the exact solutions of waves either propagating or

reflecting in a circular channel with a constant depth.
2. WAVE EQUATION

In the past two decades, prediction of nearshore
waves took a new dimension with the introduction of
the mild slope equation by Berkhoff (1972) which is
capable of handling the combined effects of refraction
and diffraction. Since then significant progress has
been made in computational techniques as well
as model capabilities, notably by Radder (1979),
Copeland (1985), Ebersole et al. (1986), Yoo and
O'Connor (1986), Madsen and Larsen (1987), Panchang
(1988), and Dalrymple et al. (1989). However, no single
model has been proven to be perfect or has clearly
outperformed the others at present. The mild-slope
equation of Berkhoff (1972) is expressed in terms of

instantaneous water surface velocity potential, ¢ as
V-(CCg Vo) +k*CCg¢=0 ¢))

Writing @=¢ \/(C_Cg—) allows Eq. (1) to be cast into the
form of a Helmholtz equation. Under the assumptions
of slowly varying depth and small bottom slope,
the equation for @ may be approximated as (Radder,
1979),

V2P +k2P=0 @

where kZ=k2-V2(CCg)*>/(CCg)">. Starting from Eq.

(2), governing equations of parabolic and hyperbolic

types on the boundary-fitted coordinate system will be
derived. The present study is restricted to the case of

constant depth.

3. BOUNDARY-FITTED COORDINATE
SYSTEM

3.1 Coordinate System Transformation

The basic idea of a boundary-fitted coordinate
system is to have some coordinate line coincident with
each boundary segment, analogous to the way in which
lines of constant radial coordinate coincide with circles
in a cylindrical coordinate system. The coordinate
system construction technique is based on the following

Poisson generating equations.
V=P, V=0 ®)

where P and Q can be used to control the coordinate
system as the source terms. In this study they are set to
zero. The generating equations map the flow region in
(x, y)-space to a computational region in (€, 1)-space

according to a transformation of the form

5:5()‘73 y), n=1n(x, y) (4)

These methods are the extensions of the methods first
successfully employed by Thompson et al. (1974). As
usual the techniques are capable of treating arbitrary
flow regions. This capability has been enhanced by the
introduction of computational regions which are
constructed from an arbitrary number of rectangles
which are fit together so as to yield a suitable set of
coordinates. Details on constructing such computational
regions are given in Coleman (1982) which describes a
program for generating such arbitrary transformations
in two dimensions.

For computational purposes the generating system of
Eq. (3) is transformed to the computational space by
interchanging the dependent and independent variables.

Then the transformed generating equations become

ax€§—2ﬂx‘§" + ‘}x,m+J2(Px§+an) =0

)
ay =20y egt WantI2(Pys+Qy ) =0
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where
a=xjt+yj B=xggtyyy y=xZ+yi

subscripts indicate differentiation. J is the Jacobian of

transformation given as
J=xgy,—xy, (6)

The transformation can then be determined by solving
Eq. (5) subject to appropriate boundary conditions.
These conditions usually specify the dependence of x
and y on & and 1 along the boundaries. Alternative
conditions, such as the requirement that coordinate
lines be orthogonal in physical space at a specified

boundary, can also be applied.

3.2 Parabolic Model
In general curvilinear coordinates generated with
V%=0 and V'n=0, the non-conservative form of

Laplacian operator can be written as

V2¢——[x2+y )P, 2(xrfc5+y§y")¢5n+(xg +y &)@,
Y

Therefore, Eq. (2) becomes

(2 +y P —2x x +y y NP, +(x 2 +yg)(bnn+12kc2d>=(08)

Equation (8) allows all computation to be done on a
fixed square grid since it has been transformed so that
the curvilinear coordinates replace the cartesian
coordinates as the independent variables.

For the case of constant depth, substituting @®=A

¢, n)eij"‘(J ¢ into Eq. (8) yields

2
(aA s+ 2ikeJ A - kﬂ_:A] - 2/3[ ko 4 4 5,,]
+A TR =0 9
where a=(x2 +y2), B:(xnx§+ygn) and y=(x¢ +y#).
If the waves propagate in the propagating direction

&, the second derivative of A with respect to & can be

neglected as

ik T2 ke J 12
ikeJ A (23 p” A, +AEN |+A,,

+ [JZ— %)kgA =0 (10)

which is the governing equation in the conformal
domain. The derivatives are approximated in the finite

difference form setting V& and Vn=1 as follows.
A.§=Ai+1,j _Ai,j
= %(A Lj+1=A; 4 A i~ A1)
A= %(Aiﬂ,j—l —2A4; FAi i)

1
'Z—(Anun =A; A ja A ) (11)

Substituting into Eq. (7) yields

a;A; i +biA; A L =d; (12)
where,
Bik J V2 Y
= +f+L
% [ 2a P 2
2_ 2

)

]_2[ ﬁtkcfa Y ]

ik J
4= l:(‘ﬂ_z—a_ - % +ﬁ}‘"i,j—1

2_ 2
+ {ZikchVZ+ y—(J——J"T/%}A,-J

[MB_ Y —"ﬂ]At j+1:| (13)

Equation (13) can be described in a tridiagonal matrix

form as
by ¢, 1 -AJ ~d1~a1-
a, b, c, A, d,
a3 bs ¢4 A, d;
= (14
L Qny bny_ _Any_ _dny —Cny

3.2 Hyperbolic Model

The governing equation of hyperbolic type is derived
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from the mild slope Eq. (1) as a pair of first order
equations as follows (Copeland, 1985).

Cg on +V

L8 9N vp =0

C ot

aa—?wqgv,,:o as)

which is similar to those used for the solutions of the
shallow water equations. Equation (13) is transformed

from the Cartesian {x, y} space into an alternate {u, v} as

Cg d 1
Tg ‘%‘7 Q. —Cuy y+Opux,— 0y %) =0

9 _CC8 (p e —my )=
S~ R =y =0 (16)
aQ, CCg _ _
at g (n“xu nux“)_o

The derivatives are approximated in the finite difference

form as
d C
E)_Tt, = @ “(Qxi,j+1_QJd,j)_y1)(Q)d+l,j ‘Qxi,j)

+xu(Qyi+1,j —Qyi,j)_x” (Qyi,i+1_QyiJ )

a0

"aQ— =L Pa(M jn =) = YoM — ) (A7)
t J
o CC,
_aQty_ = —J—& X (M ; —77,-,;) = xu(; jn =)}

This set of finite difference equations in the conformal

domain is solved by the explicit scheme.
4. RESULTS

Both wave models developed here are compared for
a circular channel of 4 m constant depth lying between
two radii ;=75 and r,=100 m and covering 180° arc. A
plane wave enters at 6=0 and propagates around the
bend in a counter-clockwise direction. At the
downwave boundary of 0=180" the waves propagate
without any reflection. The exact solution of such wave
field in a circular channel was described in Dalrymple
et al. (1994) as

o, m:ﬁanm(r)e"”“ (as)
n=0

]

Fig. 1. Schematic diagram of circular channel.

where F,,=[Y’%(kr])lyn(kr)—J’%(krl)Y%(Ia-)] with 7,

determined by satisfying
Y (e ) k)= (kr )Y (kr ) =0,n =1,2, -+ N

to enforce a no-flux boundary condition on r=r, and r=r,.

The a, values are given in the following integral form:

o, Oy Foar
an =——5————

- 19
J: r1F2dr

where the upwave boundary condition ¢(r, 0) is given
as 1.

To illustrate the effect of the BFCS, the parabolic
and hyperbolic model results accomplished on the
rectangular grid system is shown in Figs. 2(a) and 2(b),
respectively and compared with the analytical solution
shown in Fig. 2(c). In handling the reflecting conditions
on the parabolic model, Lee and Lee's (1994) approach
was employed. In the hyperbolic model, Copeland's
(1985) approach was taken in order that the reflected
waves travelling back pass out of the model and are
not re-reflected. Each mesh is the square of 1 mx1 m.
For this case, the wavenumber & is 0.301 m”, the
dimensionless channel width is kw=37.625 where w is
the channel width. As expected, the parabolic model
yields much worse results than those of hyperbolic one.
Although the results of the hyperbolic model appear
good as shown in Fig. 2(b), the phase error is occurred
along the outer boundary as shown in Fig. 3. The
model result obtained by using the BFCS are shown in
Fig. 4. The numerical results show excellent similarity

of the analytic solution. The reflection from the outer
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Fig. 3. Comparison of the water surface variation along
outer boundary between hyperbolic model results
on rectangular grid and analytic solutions for the
case of 180° arc.

wall is observed prominently at about 40° and 120"
For this numerical solution, the numbers of
computational grids to the » and 6-directions used are n
=200, m=25, respectively. Wave phases along a outer

boundary are also compared in Fig. 5. All the results
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Fig. 2. Comparison of (a) parabolic and (b) hyperbolic
model results on rectangular grid to (c) analytic
solutions for the case of 180" arc.
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Fig. 5. Comparison of the water surface variation along
outer boundary between parabolic and hyperbolic
model results by BFCS and analytic solutions for
the case of 180" arc.

show good agreement when the BFCS is employed.

If waves are blocked by a cross wall at 90°, the
waves take a turn in the opposite direction and
propagate against a circular channel again. In the

parabolic approach, differently from the iterative

QM 20 —& 40 -20 [ 20 4 L o 100

Fig. 4. Comparison of (a) parabolic and (b) hyperbolic model results by BFCS for the case of 180° arc.
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calculation in wave models of hyperbolic type, another
backward calculation is only required in this case, and
then the resulting wave field is obtained by the
superposition of the foregoing waves and the waves
going against a channel with reflected off the cross
wall. Fig. 6 shows a comparison of the numerical
results from parabolic and hyperbolic models with the
analytic solutions. The analytic solution of resulting

wave field can be given as

N . N .
00, =Y aiFu(r)e*+Y anFa(r)e ™,
n=0 n=0

0< 6< (18)

(ST

5. CONCLUSIONS

Boundary-fitted coordinates have been used extensively

Fig. 6. Comparison of (a) parabolic and (b) hyperbolic
mode] results to (c) analytic solutions for the case
of 90° cross wall.

in propagating wave fields. In this study, two wave
models of hyperbolic and parabolic types have been
developed through a conformal transformation. Both
were compared with the analytic solutions of waves
propagating through a circular channel of constant
depth lying between two radii »,=75 and r,=100 m and
covering 180" arc. Comparison indicates that both
methods provide accurate results. The computation was
also performed for a downwave reflecting condition.
The parabolic model could also simulate the reflecting
wave field by backward calculation starting with
downwave conditions approaching to the wall. When a
cross wall was put at 90°, the resulting wave fields
obtained from both wave models were in good
agreement with the exact solutions. Although the
present BFCS can be directly applied to a general

geometry, the present method is advisable to be
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discretized by using by finite-volume method in order
to yield more accurate and conservative approximation

than finite difference methods.
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