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Wave Generation with a Hydrofoil by More Efficient
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Abstract

For the calculation of the free-surface elevation, a new finite difference scheme is
studied where the third derivative term for the wave elevation is artificially added in the
Eulerian expression of the free~surface boundary condition. The paper presents a
comparative analysis with simulations performed by the classical MAC method. More
schematic computations are cammied out by changing the submergence-depth and

angle-of-attack. The present study shows that this new method is very efficient for the

simulation of free-surface elevation around the trailing edge.

1. Introduction

The wave-body interaction and free surface
treatment is related to the design of the high
speed craft. Although the theory of such bodies
running near the free-surface is not new,
almost all the former investigations were
concerned with the computation of the overall
forces on the body namely lift and drag.
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Recently some works have been directed to the
solution of Navier-Stokes eguations accounting
for the presence of a free-surface. Works
where f{free-surface problems were studied
using finite difference methods include Mori",
Lungu and Hinatsu®.  Field discretization
methods have some inherent limitations. With
any workable numerical scheme, 'numerical

viscosity’ is also present. This introduces a
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numerical diffusion phenomenon in addition to
the physical diffusion and gives incorrect
solutions for large Reynolds numbers. It is still
bevond modern computational capabilities to
use grid sizes even being sufficiently small
that numerical viscosity effects can be reduced
10 satisfactory levels at realistic Reynolds
numbers. Based on the above considerations,
some computations were carried out by Fujitam
in order to study the possibility of using a new
computational method of the {free-surface
elevation. In this paper, the third-derivative
term is applied for the 3-D case which seems
to be an extension work of Fujita, Lungu and
Mori®. Further schematic computations and
studies on the grid size are carried out in the

present research.

2. Numerical Scheme

2.1 Governing Equations

The Navier-Stokes and continuity equations
are used in the numerical simulation, which
can be seen in the text of fluid dynamics.

2.2 Boundary Condition

At the upstream the flow starts from zero
and is accelerated up to the predefined speed.
Thus, each horizontal component of velocity
has the constant value depending on the time
step. The vertical component is equal to zero
in each peint of the upstream boundary and
remains the same during the pressure
computation. The pressure is the static one
The bottom
boundary is located far enough from the still

and remains the same, too.

water level. That means the wavy motion

influence is so gentle that the zero gradient
extrapolation can be used for both components
of velocity. The pressure is set constant at
the static value. On the body surface, the
no-slip condition and the Neumann conditions

are used.

2.3 Free-Surface Treatment

The information on the location of the
free-surface at each grid point and its slope

and curvature is obtained by

The relations are of the first order of
approximation for x, y and ¢. The use of (1)
to determine the new location of the particle on
the free-surface means to define the position
locally, not taking into account the influence of
the neighbouring particle movements which can
accelerate the wave development. On the other
hand, the use of an Euler-type expression of
the kinematic free-surface boundary condition
makes possible to employ a higher {finite
difference scheme. The following condition can

be written as

FRd - I R b
ot k+l+(ul+ azAg‘) X

(2)

(W,’"‘%Aco =

Expanding in Taylor series the function § at
the (k+1} and k-th time step, and then

subtracting, we can get
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Here we introduce the third derivative term
which contributes the phase shift without
damping. It can be obtained by the Tavlor
expansions.

SAX (5;3 3§i—z+3§i—l—§i); {4)
where ¢ is a constant. {(4) is added to the
TOUD(third order upwind difference), and the

new formulation for the & ¢{/dx, which will
be used in the free-surface definition, can be

written :
k+1
agx — Béx (_§k+l+6§k'§“1

' (5)
15K+ 108k

Substituting (4) and (5) into (2}, we can get :
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(witLE Aty = 0 (6)

By manipulating above relations,

Aé‘ll (¢ i 11)
{7

§k+l—§1]_§ +§1—_§k+l g:‘

st = gkt ®)

Therefore, we finally can use the following

equations.

e = [ R - e ws
(9
1 kK pk-1
el
where,
fom 23, M dU ek sk
F' = gat T ax T BT8R
(10)
1 dw
HX JZ

3. Results and Discussion

3.1 Computational Condition

The present work consitutes the numerical
calculation of three dimensional hydrofoil. The
ratio of span/chord is 3.0 with the shape of
NACA 0012 wing section in the spanwise
direction at 10° and 20°
submergence depth is 04 and (.8 respectively.

, angle of attack. The

The computing domain is 3.5 times the chord
length in the streamwise direction. The
computational conditions are tabulated in Table
1. The grid is made as H-H topology to treat
the free-surface movement more conveniently,
but relatively a large number of iterations are
requested near the lines around the leading
edge. Fig.l shows the coordinate system for
the computation ; X, y and 2z represent

coordinates in a Cartesian system, X in the

- 89 -



A0

S. H Kwag

uniform flow direction, y in the lateral and z

normal to the x-y plane.

mesh system and computing domain,

number

insufficient to

interesting

of gnd

regions,

simulate

used here

but

IS

the flows

some places

Fig.2 shows the

The
extremely
in all

are

relatively clustered, for example, near the body

surface, around tip and trailing edges, and

beneath the free-surface.

Table 1 Computational conditions

case A case B case C
d/L 0.4 0.8 0.8
a 20° 20° 10°
&
z A
= e 4 i T
= |
— 1
Ug L f
> @

Fig. 1 Coordinates system
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Fig. 2 Mesh system and computing domain

3.2 Discussions

The free-surface wave profiles are shown in
Fig.3 which presents a comparison between the
old(MAC) method and the new numerical
scheme for the free-surface boundary condition
at T=30 where T is the non-dimensionalized
time. The zero-extrapolation is used at the
downstream for both of them. As can be seen,
the free-surface wave has reasonably developed
by using the new finite difference scheme of
the Euler-type formulation. It is a resull of
the third derivative introduced in the simulation.
The new method is on the whole successful,
but it is quite conspicuous especially in the
The effect of
angle-of-attack and submergence depth can be

shallow submergence case,

seen in case B and case C. This numerical
result demonstrates that the new finite method
does not cast a doubt on its validity. Fig.4
shows the pressure contours computed by the
MAC method and the new method.  The
pressure difference can be seen near the
free-surface for both cases. However, there is
hardly seen any difference near the wing
surface. Fig.5 shows the pressure contours on
the wing surface. The above two figures
belong to the suction side and below two to
the pressure side. In case of the new method,
the pressure gradient is comparatively modest.
The new method gives rise to some wiggles in
This may be due to the

numerical instability. Fig.6 shows the velocity

the contour lines.

vectors in the whole domain. Here, (a) and (b)
correspond to the midspan section for case A.
The velocitys defect can be seen clearly for
both cases, but the fully generated free-surface
of (b) makes some differences in the point of



Ocean Wave Simulation by More Efficient Free-Surface Boundary Condition 91

@Le0.4 alphen2d (original method)

| | ol e :
S—— mjr&& oid motho_q__ . '\\ éﬁl_ r --___-(/ .n \} L:d :w

TN — RN T
\/ - 1 e , D o
T - + " 4 0w
” thod
case A row me o } 2 o o%
§ 020
jz ) WLe04 Mipha=2¢ (rew meihod]
G=6) | o
. A N A " M P8’ — o « 2 080
e 0.0 10 2.0 30 w0 { '\&..-1’_ SR R ! - a8
NSRS o
ey .“// pETa—— ) . ?_
. wathod
0o f R — . . .
/\ naw method 0 L ?
case A Fig. 4 Pressure contours computed by the
(j=15) originaliMAC) method and the new
os . ) ) , . {finite difference) method
-1.0 00 .G 24 3.0 4.0 ‘dIL-OA altas20 forkginal mathod)
2
/}, [+ 0.50
— e )
ook __odmathed s ™ ’ y
T T + o2
.—’\- - new mathod 1 _,// ’Q //7 s o010
/ 1000
case B / \ /7/ ™ : :;:
. f| P g ! « 03
(j=6) 0!3:..!.*.. ‘.
45 A 4 A L i -1 [1] 1 2 3 4
-1.0 [1R¢] 10 20 3.0 4.0
2
‘ g new method b
case B
(7=15) o .
05 i iy i 1 n -1 a 1 2 3 4
10 0.0 1.0 20 30 40
2 /el 4 aipha=2C jordginal mathod]
_ .- /l T 0%
00 S pldmethod N N X o
.\/ new method e f/’if\ N A * oz
1} [ ; 7 e o
{ .
case C / I] \ \ / J ¢ ow
. AN 4 620
(G6) M vl t o
¢ § h $- 6 L] 2 LA
_05 ' 1 . L L
10 0.0 1.0 2.0 1.0 40 o ° ' 2 3 +
. /w04 wiphas20 (new method)
-new_method ;'}
a0 "WW‘“ e e e st i
== olg method 5
P ?
1 ¥
case C (S\‘ // ¢ (] [
(] =15) 4. {7 ’,;"'W la
s N L M " N 0 a’e . 5 B
1.0 00 1.0 20 30 40 A 0 1 2 a P
Fig. 3 Free-surface profiles computed by Fig. 5 Pressure contours on 3-D wing surface
using the old(MAC) method and the (above two belong to suction side,
new finite difference scheme below two to pressure side)

_.91...



92 S. H Kwag

Wi =i4 siphes20 {originel method)
’4 j e nm o - —
@ | :‘ ( L k ﬁ ﬂ ﬂ " ‘\
1 - b 2 3
@La0.4 mpheeZd {new method)
H
b | 7
. o N 2 3

{c)

(d)

@] | ! l

0o 85 . 15

Wi
o[ []]TITITH

Fig. 6 Velocity vectors for case A
(a), (b) : x-z plane (j=6)
(¢}, (&) : x~z plane (j=15)
(e), (f} : y-z plane (j=27)

(c) and (d)
correspond to the near-tip section for case A,

vector direction and magnitude.
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where we can't see any significant discrepancies.
(e) and (f) show the velocity vector in y-z
plane. The two methods show similar phenomena,
ie., vortical motion around the tip.

4. Conclusion

For the validation of the numerical scheme,
the flows around the three dimensional
submerged wing is investigated by carrying
out some comparative computations. Findings
are as follows :

1} The free-surface wave can be generated at
the large angle of attack 20° which usually
gives some numerical trouble of the
divergence. It means that the N-S solver
can treat free-surface viscous flows more
efficiently with the new finite difference
scheme.

2) The finite difference method with the third
denvative gives the better results in the
free-surface generation. The wave in the
far downstream can be made even if the
grid number is so limited.
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Appendix

The govern equations are the Navier-Stokes

and continuity equations.

u, + uu, + vu, + wu, = —p,‘-+-§]‘—v2u
n

v fuve vy b owy, = o-py 4 -1%“ viy
n
w, + uw, + vw, + ww, = ~—p, + —l%—vzw
n

u, tv,+tw, =0

The Navier-Stokes equations can be obtained
by a transformation for computation.

u+U-u+V-u,+W-u
== (&P + 0P, +L,P)+1/R, - viu
v+ U v +V- vy, +W-y
=—(¢,P,+n,P,+{ PO +1/R, - viv

wFU -wm+V-w,+W-w

=— (¢, P +n,P,+L,PO+1/R, - viw

The continuity equation is obtained by
transformation.

EupHnu, Hluc v v HEw

+l)zw,, '+’(ng =0

where U, V, W are contravariant velocities.

U=tua+iyv+iw
V=nu+nyv+3w

U=fu+i,V+{,w

The free surface is moved by the following

equation.

L/t +u-8/dx +v-8/6y — w=10],-
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