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ABSTRACT

In this paper, we consider a minimum distance(M.D.) estimation
based on kernels for U-statistics. We use Cramér — von Mises type
distance function which measures the discrepancy between U-empirical
distribution function(d.f.) and modeled d.f. of kernel. In the distance
function, we allow various integrating measures, which can be finite, o-
finite or discrete. Then we derive the asymptotic normality and study
the qualitative robustness of M.D. estimates.
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1. INTRODUCTION

For each n, let X3, X5, ..., X, be a sample with a modeled d.f. F,.; which
may be different from the actual d.f. G,.; with some parameter £ which is
to be estimated. We assume that F,,.; and G,.; are continuous and have
densities f,.; and g,.;, respectively. Here we allow that F},.; and G,.; can be
varied with n. Let A be any symmetric kernel of £ with degree k such as

E[h(X1, Xay... , Xx)] = ¢ (1.1)

Also let F, and G, be the d.f.s of h under F,.; and G,.; with respective
densities f,.x and g,.x. Furthermore let < n, k >:(:), and

Sn(t;u) = 2—7:’/72—> Z [I(h; <t+u)— Fox(t)] (1.2)

where h; represents a generic random variable from < n, k > random variables
for notational convenience. Finally, let A be a 0 — finite (or finite) measure
and define Cramér — von Mises type distance function

Ma(Au) = /_ " 82t u)dA(2). (1.3)

We denote £,()\) as a minimizer of (1.3) if it exists. Then &,()) satisfies that

~

inf Mo(; ) = M (% €x(3) (1.4

and is called an M.D. estimate of £.

The M.D. estimation method based on Cramér — von Mises type dis-
tances, has long been one of the research topics in the theoretical Statis-
tics. Parr(1981) provided an extensive bibliography on the M.D. estimation
classified by subject matters up to 1980. However the applications of the
M.D. estimation have been confined mainly to location parameters. Koul and
DeWet(1983) obtained a class of M.D. estimates of the slope parameter in the
linear regression model. Furthermore, very recently, Dhar(1991) applied the
M.D. estimation method to the time series data. However, even for the case
of the linear regression model or time series data, when Cramér —von Mises
type distances are constructed, the slope parameter and the autoregressive
parameter in the weighted empirical d.f.s play just the role of location pa-
rameters. This point makes us to consider using kernels for U-statistics since
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the interested parameters are just the means of d.f.s of the corresponding ker-
nels and so they become location parameters in the d.f.s of kernels whatever
originally they are. Therefore we can apply the M.D. estimation method to
other than location parameters such as scale parameter from the nature of the
case. For kernels, we consider general forms which were used by Serfling(1984)
and Akritas(1986). They obtained the generalized L-estimates from the U-
empirical d.f.s which are constructed from the random variables generated by
general forms of kernels. In some cases, the generalized L- estimates coin-
cide with Hodges-Lehmann estimates according to choices of kernels. In this
vein, we will use general forms of kernels. The integrating measure A\ may
be chosen along with the level of knowledge for F,.; or F,. For example,
if Fy,.1 or Fy were fully parameterized, then A could be chosen as a weight
function with Lebesgue measure proposed by Boos(1981) for the efficiency
considerations. For more discussions for this subject, refer to Koul(1992). In
the sequel, we use F;, and G, instead of F,;; and G, for notational brevity
when no confusion arises. Also for densities, we use f,, and g, instead of f,.
and g,.; in the same situation.

2. EXISTENCE AND ASYMPTOTIC
NORMALITY OF M.D. ESTIMATES

In order to discuss the existence and derive the asymptotic normality of
M.D. estimates, we begin by introducing some notations and then stating
several assumptions

NOTATIONS : Foreach ¢ =0,1,... ,k -1, let

Hi(t|z) = /---/I(h(xl,mz, ST T, Ty, .., Tk) — €< )
i k
Hanzl((L'j) H dGn;l(.'Ej). (21)
7=1

j=i+2

Especially, when i = 0, we note that since

k
HO(t|z) = /---/I(h(m,xz,... j2x) — € < 1) [] dGuae;). (2.2)

j:
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Eeg, . (H3(t1X1)) = Ps,,(A(X1, X2, ..., X&) — £ < t) = Galt). (2.3)

ASSUMPTIONS :

(A1) = /_ T (Gua(t) = Faa(£))2dA(2) = O(L). (2.4)
(A2) /_ (G ()1 = G ())dA(E) < oo. (2.5)

(A3) For each 4,5=1,2,... ,k — 1 and for all t € R},

[ i) = Fra0)] < 41Goa(8) = Fa®l, (2
for some suitable positive constants a;.

(A4) For i = 0, there is a compact subset M C R! such that for all
t € R\M,

/_oo HY(t|z)dGpa(z) < BoGra(t) (2.7)

and

/ " (1 = HO(t]2))dCna(2) < fo(l — Gua(®)), (2.8)

for some suitable positive constant Gp.

(45) lim /_ " gult + 2)dA(E) = [ " an(B)dA(t) < 00 (2.9)
and
lim ~ g2(t + 2)dA(t) = /oo g2 (t)dA(t) < oo. (2.10)



Minimum Distance Estimation 117

Lemma 1. Both assumptions Al and A3 imply that

n/_oo (Gn(t) — Fa(t))%dA(t) = O(1). (2.11)

>

Proof. First of all, we note that

n _Fn(t)
= /---/I(h(a)l,l'z,..., £<t HdGnl -'L'z Hanl(xl

_ S/.../I(h(xl,x%... ,zk)—ESt)I;[lan:l(xj)

H dGna (2 ){dGra(2it1) — dFna(zit1)}

j=i+2
k=1 oo
-3 / Hi (8]2)(dGra (2) — dFia(x)).
i=0 ¥ —©
Then by applying Minkowski’s inequality and using A3, we have

n / " (Gult) - Fat))2dN?)

o0

~ n {S/ H (t)2)(dGna(z) — dle(a:))}zd)\(t)

— 00 i=

n{ 1{/ {/ Hi (t]2) (4G (2) — dFaa (z ))}2d)\(t)}1/2}2

n{ a,{ (Gna(t) — Fn:l(t))zd/\(t)}llz}z-

Finally, by appealing to A1, we see the result.

IN IA
T .
T

i=
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Lemma 2. Both assumptions A2 and A4 imply that
/ Ga(t)(1 = Ga())dA(t) < oo, (2.12)

Proof. From A4, we have

[ " Galt)(1 ~ Galt))aA()
- /—oo /_°° Hp(t|z)dG () /°°(1 — HO(t|2))dG 1 (z)dA(t)

—00

= / /°° H(t|z)dGna () /oo(l"Hg(tlx))dGm(x)d)\(t)
M J -0 oo
[ [ G [0 HR)G (N0

< AM) + B / G (£)(1 = Gt (£))dA(2).

RI\M

Thus the result follows from the compactness of M and A2.

Note. As a matter of fact, in case of a convex combination of random
variables, Assumptions A3 and A4 are unnecessary and so Lemmas 1 and
9 can be derived from Assumptions Al and A2 directly. As an example,
consider

h(Xy1, Xa, - - JXe) = (Xa+ Xo+ ...+ Xi)/k (2.13)

Then the variance of h(Xq, Xa, ..., Xk) is 6®/k where o? is the variance of
X;. Thus there exist two points t; < t3 such that

{ Gi(t) < G(t) ift<ty
Gi(t) > G(t) ifty <t <ty (2.14)
Gk(t) < G(t) if t >ty

where G and Gy, are the actual d.f’s of X; and h(Xy, Xo, ... , Xk), respec-
tively. Thus for ¢; < t < tg, Gk(t)(1 — Gk(t)) > G(t)(1 — G(t)) whereas for
t <t or t>ty, Ge(t)(1 — Gi(t)) < G(t)(1 — G(t)) since Gi(t;) < 1/2 and
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Gi(t3) > 1/2. Thus Lemma 2 follows directly from A2. Also when the kernel
h is of the form (2.13), we note that

d [ .
4 [ Hitie)(dGns(e) ~ dFua(o)
= (fn:l L fn:l) * (gnzl -k gn:l)(t) - (fn:l * ook fn:l) * (le ko k gn:l)(t)
i times k-1 times i4+1 times k-i-1 times

= (fn:l *ovee ok fn:l * Qnip ¥k gn:l) * (gnzl - fn:l)(t)-

Thus
[ Bt dna(e) R
t
= l / (gnzl k vk Qo ¥ fn:l * ook fn:l) * (fn:l - gnzl)(m)dx
- . . t

< NgaallTH I faallT™ / (gn1 = fra)(2)dz

< NgnallT 1 falli ™ 1Gra(t) — Faa(8)l,
where || || stands for the L;- norm. Therefore Lemma 1 follows directly

from A1l. We also can derive A5 from assumptions for density gn.; such as

/ " gna(dA(t) < oo and /_ 7 g2 (1)dA() < oo,

when the kernel h is of the form (2.13).

Now we come to discuss the existence of M.D. estimates. We start with
defining a function L,(u) as follows:

Ln(u) = / " St u)gn()A(2). (2.15)

Then we note that L,(u) is a nondecreasing function of u, which crosses 0.
Also we note that by Cauchy-Schwarz inequality,

Mn(Xu) > L3 (u)/q, (2.16)
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where g = [°°_ g2(¢)dA(t). This implies that M,(); u) is bounded below by a
nonnegative function which is nonincreasing on (—o0, up) and nondecreasing
on (ug,00). This fact guarantees that there exists a minimizer of My,(A;u)
for each n (cf. Koul and DeWet 1983).

In order to show the asymptotic normality of v/7(€,()) — &), we consider
the case that u — £ = b, where /n|b| < B for some 0 < B < co. With this
notation, we rewrite S,(t;u) and M,(X;u) as

\/ﬁ <n,k>
. - v . < . .
Saltib) = 35 ; [I(h; < t+£+b) — Fa(t)] (2.17)
and -

M,(\b) = / S2(t; b)dA(2). (2.18)

Next we define a U-empirical process Y, as

<n,k>

Yo (t;b) = Z (h; <t 4 & +b) — Gu(t +b)]. (2.19)

Then we can re-express (2.17) using the U-empirical process Y, as

Sn(t;b) = (Ya(t; b) — Ya(t;0)) + v/n(Gu(t + b) — Gr(t) — bgn(t))

+4/1bgn(t) + Ya(t; 0) + V/n(Gn(t) — Fu(t)) (2.20)

to obtain the asymptotic quadratic form Mn(/\; b) in b of M,();b), where

O = [ (Vbgalt) + Ya(t:0) + VA(Ga(t) ~ Fa(D)PIND)  (221)
For this purpose, we review some results for U-statistics and U-processes. The
proofs are in, for example, Serfling(1980) and Shorack and Wellner(1986).
Lemma 3. For any ¢t € R,! the variance of Y;(¢;0) is given by

k

Var(Ya(t;0)) = 2# 2 ('J“) <’; B I;) &) (2.22)
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v

where C](t) = CO’U(I(h(Xl, N ,Xk) —f S t), I(h(Xl, e ,Xj, Xk+1, ..
Xok—j) — € < t)), and satisfies that

Var(Ya(; 0)) < kCu(t) = kGa(t)(1 — Ga(t)) (2.23)

Lemma 4. The U-empirical process Y, (¢;0) converges weakly to a Gaussian
process Y (t) with covariance function I'(s,t),

I(s,t) = k2 [ /_ " H (s)o) H (t]2)dGCma ()

~ [ B6l)Gue) [ HAGuaw)]- (229

As a first step for proving the asymptotic normality, we state the follow-
1ng theorem which shows the asymptotic equlvalence between M,()\;b) and
M,(\;b). The asymptotic quadratic form M,(X;b) in b is essential to de-

rive the asymptotic normality of v/7(€,(A) — £). The proof is postponed to
Appendix A.

Theorem 1.
For any 0 < B < oo with all the assumptions, we have

E sup |My(Xb) — Ma(;b)] = o(1) (2.25)
{vn|b|<B}

The next theorem states that the two minimizers &,()\) for M\n()\; b) and

£.()) for M,(X;b) have the same limiting distribution. Also the proof is
delayed until Appendix B.

Theorem 2.

Let £,()\) be a minimum solution of Mn(/\; b). Then with all the assump-
tions, we have

Vl€a(A) = Ea(N)] = 05(1). (2.26)

Theorem 2 tells us that

[ 000 + VAGAD) ~ B0} |
I g2 (t)dA(t) e
(2.27)

V(éa(X) - €) =

Finally, we arrived at the following conclusion.

121
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Theorem 3.

For each n, let

n % t) — F,(t))dA(t
VA [%0 f Gl B O _, 225

Then with the assumptions introduced up to now,
\/ﬁ(én(’\) B { - l'l'n()\)) (229)

2

On

converges in distribution to a standard normal random variable, where

2 _ L2 [0 gn(8)ga ()T (s, t)dA(s)dA(2)

' [f_m R (1)dAD)]

We note that if p,(A) — p(A), then p()) is the asymptotic bias of the
M.D. estimate &,()A) due to the mis-specified modeled d f..

(2.30)

3. STUDY OF QUALITATIVE ROBUSTNESS FOR M.D.
ESTIMATES

Here we discuss the qualitative robustness(cf. Hampel 1971) for the M.D.
estimates against the gross error model. Thus we assume that F,; = F; for
all n. This means that the modeled d.f. does not vary with n and so Fy,.x = Fj
for all n. Also we denote P, and Q, as the probability measures according
to Fy and G,., respectively, which are constructed by < n,k > numbers of
random variables generated by the kernel h from a sample X;, Xs,... , X,.
To begin with, we state a definition of the qualitative robustness, which is a
version due to Koul(1992).

Definition. A sequence of estimates {é} for £ is said to be qualitatively

robust at F}, against Q, if it is consistent under P, and under those Q,, that
satisfy

D,, = sup |Fi(t) — Gnx(t)| = 0 as n — 00. (3.1)
t
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Since we consider the gross error model, let G,.; = (1 — §,)F, + 6,G1,
where G| is some continuous d.f. different from F} and 8, = O(n~'/2). Then
we note that

sup |F1(t) — Gna ()] = 6, sup |Fi(t) — Gy (t)] = O(n~V/2).
teR! teR1

We begin our task by showing that the transformations of random variables
with respect to kernel A maintain the gross error model.

Lemma 5. For any given G,.; = (1 — 6,)F; + 6,G; and a kernel h, we can
express Gn as G = (1 —0;,) F + 6, G}, where G} is a d.f., which is a linear
combination of convolutions of F; and G; and 6% = O(n~1/?).

Proof. Now we have for any ¢t € R!,

Guslt) = | T / " (b1, 30, w) — € < ) [] 4Gl

_ /_:../_:I(h(xl,m,... Jok) — £ < 1)

[T4( = 62)Fi(z) + 8aGi(2:))

- -armos 5 (Yo s

J=0

where Hi(t) = [T - [T I(h(z1,23,...,7%) — & < ) [, dFy(z:)
e _j+18G1(zi)forj =0,1,... ,k—1. Let §, =1~ (1 —8,)*. Then it is easy
to see that from the binomial theorem,

A1
h=>_ ( ) (1= 8,)7687. (3.2)
—\J
j
This shows that Gy = (1 — 63)Fr + 65G}, and &% = O(n~1/2).
Now from (2.27), we have

<n,k>

Yalt; 0) + Va(Gualt) = Ful®)) = — k> Z[Ih —{<t) - Fi(t) (33)

123
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Since (3.3) converges weakly to a zero mean Gaussian process under P,
it is obvious that /n(€,(\) — &) converges in distribution to a zero mean
normal random variable under P,. This implies that the sequence {€.(\)} is
consistent under Py,.

Next to show the consistency of the sequence {,()\)} under Q, it is
enough to show that for each n, p.(A), the bias is bounded under Q,.

Straightforward calculations show that

vn

[ on)(Guatt) - Fk(t»dA(t)‘

— 00

< W/néy, /_: gn:k(t)

> [ e - am@)| i

Then from assumptions A3 and A5 with the fact that 6, = O(n~1/?), for each
n, the bias is bounded. Thus the distribution of £.(A) under Q, converges
weakly to a degenerate distribution, degenerate at ¢. This shows that the
sequence {£,(A)} of M.D. estimates is qualitatively robust against the gross
error model. Especially, when the integrating measure, A is finite, then any
M.D. estimates are qualitatively robust (cf. Koul 1992).

4. AN EXAMPLE

In this section, we show an example by taking Lebesque measure for the
integrating measure A. We assume that G is symmetric about £. We note that
¢ is the mean of G if it exists. Then X; is a symmetric kernel for ¢ and X,,, the
corresponding U-statistic. It can be easily shown that med{(X; + Xj) /2,1 <
i,j < n} is an M.D. estimate for £(cf. Koul 1992).

Now we can extend this idea to the more general case. We consider the
generalized kernel (X; + Xz + ... + Xx)/k for . Since the distribution of
(X1 + X3 + -+~ + Xg)/k is also symmetric about { when the distribution of
X, is symmetric about £, an M.D. estimate for £ would be of the form

med[(xn X+ A X))+ (X A Xy e Xjk)]

= (4.1)

from < n,k >2 number of random variables. We note that (4.1) is the
generalized L -estimate in the sense of Akritas(1986).
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APPENDIX

Appendix A. In this appendix, we prove Theorem 1 with the following
lemmas.

Lemma 6. Lemmas 2 and 3 imply that

E ooY,?(t;O)d,\(t) < oo. (A1)
{ [ rwomo]

Proof. From Fubini’s theorem and Lemma 3, we have

5 [~ VA0 | <k [ Gi® =k [ G0 - Gat)ire

Invoking Lemma 2, we see the result.

Lemma 7. Lemma 3 with A5 implies that for every 0 < B < oo with

Valbl<B,
E{ [ o) - vats o>>2dA(t)} — o(1). (42)

—00

Proof. From Fubini’s theorem, Lemma 3 and mean value theorem, we have

{ / (Ya(t:b) = Yalt: 0))2d/\(t)} < k / u(t +B) — Ga(t)dA(2)
= & [ blan(t)ax),

for some t*, where t* is a number between ¢ and ¢ +b. Thus the result follows
from A5 with the fact that b = O(n~1/?).

Lemma 8. From Lemma 7, for every 0 < B < oo, we have

2 =0 . .
{{;EIQB}/ (Ya(t;0) — Ya(t;0))"dA(t )} =o(1) (A:3)

125
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Proof. First of all, we consider a partition of [~ B, B] in the following manner.

—B=ry<r <...<rm=Bandasn — oo, max;(r;—r;_1) — 0. Then for
any r;_1/v/n < b < r;/y/n with the facts that a < b < c¢ implies b2 =a’®+ 2
and (a + b)? < 2a? + 2%,

/ " (Yaltsb) — Yalt; 0)2dA(0)

— 00

< /_ ) (Yalt; 7j1/v/n) = Ya(t;0) + Ga(t + rj_1/v/n) — Ga(t +b))?dA(t)
[ (altsms/ V) = Yalts0)+ Galt 4 73/ VA) — Gult + DA
< 2 [ (Valtiria/VA) — Yt 0)dA()

+2 /oo (Yo (t;75/v/n) — Ya(t; 0))%dA(2)
+4 [ ~ (Gn(t+7;/v/1) — Galt + r5_1/v/1))*dA(L).

Then we have that

sup / (Ya(t:5) — Ya(t; 0))2dN(t)
{V/n}p|<B} v ~cc

< oY [ Waltins/vA) - Y0 N0

+4 [ max(Galt 473/ VA) - Galt + rya/VRIAN).

Therefore by letting first n — oo and then m — oo with Lemma 7, we see
the result.

Lemma 9. For every 0 < B < oo with 4/n|b| < B and with A5, we have
n [T (Gt + D) = Galt) < bmPDO =0l). (A

Proof. From mean value theorem, there is a t* between t and ¢ + b such as
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Gn(t + b) - Gn(t) = bgn(t*)'

Then we have

o0

n / " (Glt +5) — Gult) — bgalt))dA(E) = b / (9a(£7) — ga(t)2N(2).

Thus by A5, we have the result.

Lemma 10. From Lemma 9, for every 0 < B < oo,

sup n / (Gt +b) — Galt) — bga(£))2dA(E) = o(1). (A.5)
{vn|b|<B} J-oo

Proof. With the same partition and arguments used in Lemma 8, we have

n [ (Galt+8) - Gult) — b0V N0
< o[ (Galt+ rya/VR) = Galt) = 731/ Vgn 1) "dN()
son [ T (Gult + 15/V/7) — Galt) — 13/ v/gn (1)) *dAN(D)

—00
o0

+4(rs - 151)° / 2(H)A(2).

—00

Thus we have that

sup [ " (Galt + b) = Ga(t) — ban(t))2A)
{+/nlb|<B} —00

< 4TLZ/;: (Gn (t + T’j/\/—) - Gn(t) - "'j/\/ﬁgn(t))2 d)‘(t)

o0

+4max(r; — r;_1)? / G2 (B)dA(D).

— 00

Then by first letting n — oo and then m — oo with Lemma 9, we see the
result.
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Lemma 11. For every 0 < B < oo, with A5, we have

E{ sup +n [ |(Ya(t;d)—Ya(t0))
{Vall<B}  J-o0

(Ga(t +b) — Ga(t) — bga(t)))ldA(t) } = o(1). (A.6)

Proof. From Cauchy-Schwarz inequality, we have that

Vi [ 106(E0) = Tl 0)(Galt +) = Galt) ~bon ()X
00 1/2
< w{[<nmw—nww%wﬁ

{/www+w—@m—WWWMmFﬁ

—oo
Thus from Lemmas 8 and 10, the result follows.

Lemma 12. For every 0 < B < oo, we have

E{ sup /00 |(v/1bgn(t) + VR(Ga(t +b) — Ga(t)) + Ya(t;0))
{V/n]p|<B} ¥ ~o0

(nmw—nmmnwm}=dn‘ (A7)

Proof. This also follows from Cauchy-Schwarz inequality and Lemmas 6, 8
and 10.

Lemma 13. For every 0 < B < oo, we have

4 sup Vi [ 1(+/Rbgn(€) + VA(Galt +b) = Ga(t)) + Ya(t: 0))
{+/n|bl<B} —o0

(aﬁ+w—aﬁrw%mnﬁm}=dn (A8)

Proof. We can prove this with the same arguments used for Lemma 12.
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Proof Of Theorem 1. First of all, we note that

‘Mn()‘; b) - Mn(/\; b)|
/ " (Ya(tib) — Yalt; 0)* dA(Y)

AN

n / (Gult +b) — Ga(t) — bga(£)))* dA(t)
+2vm / T (Yalt:8) — Ya(t0)) (Galt +1) — Ga(t) — bga(t))) [dA(2)

12 [ 1(VRban(t) + VAG (e +8) = Go(8) + ¥a(5,0)
(Ya(t; ) — Ya(t;0)) |dA(t)
32V [ [(Vbgn(t) + VA(Galt +1) = Galt)) + Yalt:0))
h (Gat +8) — Galt) — ban(t)) [dA(D).

Thus the proof is completed by applying Lemmas 6 to 13.

Appendix B. We begin with the following result for the proof of Theorem2.

Lemma 14. For every € > 0, 0 < z < 00, there exists an n, and a B(e, 2)
such that

P{ _inf M,(\b) > 2} >1—¢, for all n>n, (B.1)
{v/nb]>B(e,2)}

and

P{ _inf M,(\;b) >z} >1—-¢ for all n>n. (B.2)
{v/nlbl>B(e,2)}

Proof. Form (2.16), we have

P{ _inf  Mn(\b)>2}>P

{ _inf
{vnlb|>B(e.2)} {v/nlbl>B(e.2)}
where g was defined in section 2. Also we define a function

L%(b) > zq},

ACEy) " (Vibga(t) + Ya(t;0) + VA(Gnlt) — Fa(t)))gn(t)dA().
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Then by the same reasons used for Theorem 1,

E sup |Ln(b) — La(b)| = o(1).
{vnlb|<B}

Also we define
Q= / 2(£0) + VA(Gn(t) = Fa()))ga(t)dA(2).

Then we note that from Lemma 4,

v [~ (Gnlt) - FO)an(Bar) = O)
and -
@<k [ Galt)(1 = Gal)NO).
Thus for any € > 0, there exists n;. and K, such that
P{QI <K} >1—¢/2 for all n> ny.

Let B satisfy that
> (K +v/249)/q.
Thus

P{ inf LX(b)>z
Yt D) 2 20} {vAlbi=B}

{Vnlbl=B}
P{|Q + Bq| > \/zq}

vV IV IV

P{|Q|§Ke}21_€/2

P{ inf |L.(0)] > v7a)
P{ inf |Q-+ibel > g}

P{|Q + K. + /zq| > \/zq}

(B.3)

Thus from (B.3), for every € > 0, there exists ny. such that for all n > ng,,

P{ inf L2(b) > 2q} > P{ inf L2(b) > zq} —¢/2.

{v/nfb|=B} - ~ {vnp=B}

(B.4)

Thus we choose n, = max(ny, ns) and use the monotonicity of L, (b) in b

together with (B.4) to see (B.1). Also we can prove (B.2) similarly.
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Proof of Theorem 2. From Lemma 14, we obtain that

\/ﬁlén - gl = Op(l) and \/ﬂén - 'El = Op(l)'

Thus from Theoreml, we have that
IMa(X;6n) = Ma(Xi o)l = 0p(1)  and  [Ma(Xi&n) — Ma(Xi )| = 0p(1).
Therefore by applying the triangle inequality, we have that
Mo (X; &) — Ma(X; €a)] = 0,(1).
Therefore since

Mn(/\; én) - Mn()‘; én)

= n-&)E+é) [ " R0dA)
v -&) [ " 0alt) (Ya(t:0) + VA(Ga(t) — Fa(t))) dA(H),

we obtain the result from A5 and Lemmas 1 and 6.
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