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ABSTRACT

In the problem of estimating a vector of unknown regression coef-
ficients under the sum of squared error losses in a hierarchical linear
model, we propose the hierarchical Bayes estimator of a vector of un-
known regression coefficients in a hierarchical linear model, and then
prove the admissibility of this estimator using Blyth’s (1951) method.
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1. INTRODUCTION
Consider the linear model
y=XB+e, (1.1)

where y is a n x 1 vector of observations y;, X is a n X p known design
matrix with rank(X)= ¢(g¢ < p), B is a p x 1 vector of parameters, and e
is a n x 1 vector of random errors. The hierarchical Bayes (HB) procedure
which is a particular modeling of the prior information decompose the prior
distribution into several conditional levels of distribution between structural
and subjective items of information. A crucial point in the historical de-
velopment of Bayesian methods was the recognition that the statistician’s
knowledge about the parameters in a model could also be subject to mod-
eling. Prior knowledge can be roughly classified as structural relationships
and parametric assessments, the latter being potentially more controversial
than the former. The hierarchical linear model has proven to be successful in
modeling structural knowledge. Good (1965) in his important work on the
estimation of proportions, introduced the idea of specifying the prior distri-
bution in stages. Lindley and Smith (1972) in their fundamental paper on
the Bayesian linear model gave definition meaning to the term ”hierarchical
prior specification” and provided the basis for what has proven to be most
fruitful area of development within the Bayesian paradigm.

In particular, hierarchical linear models were first introduced by Lindley
and Smith (1972). Smith (1973a, 1973b) extended the use of general Bayesian
linear model to estimation of parameters in the third stage of the hierarchy,
as well as second stage. Strawderman (1971) proposed the HB procedure
in estimating the mean vector under the squared error loss. Albert (1988)
considered computation methods of Bayesian hierarchical generalized linear
model. Pericchi and Nazaret (1988) characterized the consequences of being
imprecise in the higher levels of the hierarchy, conditional on the data. Also,
Berger and Robert (1990) proposed subjective hierarchical Bayes estimator
of a multivariate normal mean and proved minimaxity of HB estimator. Re-
cently, O’Hagan (1994) proposed hierarchical linear model. Datta and Ghosh
(1995) proposed a class of hierarchical Bayes estimators which overcomes the
Neyman-Scott problem in estimating the error variance in one-way analysis
of variance (ANOVA) models and verified the minimaxity of HB estimator.
Blyth (1951) proposed a sufficient admissibility condition, relating admissi-
bility of an estimator with the existence of sequence of prior distributions
approximating this estimator.
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In this paper, we consider the problem of estimating 8 under the sum
of squared error losses Lo(3,d) = |3 — d|?>. In Section 2, we provide the
hierarchical Bayes estimator of a vector of unknown regression coefficient in
a hierarchical linear model. In Section 3, we propose some lemmas playing
an important role in subsequence analysis and show that the admissibility of
a HB estimator Bup using Blyth’s (1951) method.

2. HIERARCHICAL BAYES ESTIMATOR IN A
HIERARCHICAL LINEAR MODEL

In this section, we derive a hierarchical Bayes estimator in the following
model ;

(i) conditional on B and v, y ~ N,(X8, a™'I,), where X isan x p
(p < n) design matrix with rank(X)= ¢ < p.

(ii) conditional on v, B ~ Ny(X1v, o 'V), where X; is a p x ¢(qg < p)
design matrix with rank(X;)= ¢,  is a positive known constant, and
V is a p X p known positive definite matrix.

(iii) = is uniform over RY.

Theorem 2.1. For the hierarchical model defined in the above, the hierar-
chical Bayes estimator of 3 is

Bup = [X'X+ V! VX (X\VIX) 1 X[V Xy (2.1)

Proof. The joint (improper) density of y, 3 and + under the above model
is given by

Fy,B,y) = (2r) 1 (HPlgi0te) |3
%y - XB)(y - XB)}
(B - X17)VY(B - X1’7)}
[y'y — 2y'XB + B X'XB+ BV
‘Blvlel(X{V‘le)‘IX{V—lg]}
exp{ — —g-[*/ (XXX VB XV X
[y - (X3vix) " X vig)) (2.2)
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Next, by integrating (2.2) with respect to ~y, we get the joint (improper)
density of y and 3 which is given by
a

f(y,8) o exp{ — Sy - 2w XB+BXXB+BVP
—BVIIX (X X)X v al)
Since f(Bly) < f(y,B), the conditional density of 3, given y, becomes
f(Bly)
x exp| - %[ﬁ XX 4+ V- VX (X VLX) TGV Xy
(XX 4V -VIiX (XX X v
B-X'X+V7 - VX (XY TXG) XV Xy (2.3)
From (2.3), the conditional expectation of 3, given y, is

JBf(B.y)db
J£(B,y)dp

L[B-G-ezp{ - 2|8~ DX'y!D '3 - DX'y]}dB
L[G-exp{ - g[8 DX'y}D-'[8 - DX'y]}dB
where D = [X'X + V! — V71X (X VI X))t xv i
and G = (2r)"2af|D|"3
= [X'X+V1I-vIiX(XiV7IX) T X VT Xy

E(Bly)

Therefore, the hierarchical Bayes estimator of 3 is

BHB = E(Bly)
= [X'X+V 1 -VvIX(XiV7IX) T X VT Xy, (2.4)

Remark 2.1. If V — oo in (2.4), the hierarchical Bayes estimator of 3 is
identical to the least squares estimator 815 = (X'X)~' X'y when rank(X)= p.

3. ADMISSIBILITY OF HIERARCHICAL BAYES ESTIMATOR

In this section, we give two matrix lemmas and a property of expectation
in quadratic form, playing an important role in subsequence analysis.
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Lemma 3.1. Let A(n) and B(n) be respectively k x I, I x m matrices with
elements depending on n. Then

lim Agxi(n) - Bixm(n) = [ im Ag(n)] - [ im Bixm(n)].

Proof. Let
au(n) a12(n) T au(n)
Akxl(n):( : : ),
ar1(n) ax2(n) - au(n)
and
bii(n) bia(n) -+ bim(n)
lem(n) = ( ) .
bu(n) bi(n) -+ bim(n)
Then
! l
_Zl a1j(n)bjr(n) - }_? a1j(n)bjm(n)
ApxiBixm(n) =

| : l :
Yo ari(mbju(n) - D aki(n)bjm(n)
j=1 j=1
Hence, we have

r}g{)lo AgsiBixm(n)

! !
Z_:nll,ngoah ) lim bji(n) - Z_:nll_)ngo ay;(n) lim bjm(n)
- ! ' ! '
ZJLr&ak, ) lim bji(n) - Z,}H&aka ) im bjm(n)

= [nll)ngo Akxl(n)] . [nll_)f{.lo lem(n)]'

Lemma 3.2. Let Ax(n) be a k x k nonsingular matrix with elements de-
pending on n, then

lim A;'(n) = [lim Ag(n)]™"

n-—00
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Proof. We have
I = A (n) - Ak(n),

where A;'(n) is the inverse of Ai(n).
And

r= Jim 1= [l A7 (0] iy As()
Therefore lim Aft(n) = [lim Ap(n)] ™t
Lemma 3.3. When x is N(p, V)
E(x'Ax) = p'Ap + tr(AV),
and when p =0
E(x'Az) = tr(AV).

Proof. See Searle (1970, p54).

In the following theorem we prove admissibility of hierarchical Bayes esti-
mator Byp in (2.1) under the sum of squared error losses Lo(3, d) = |8 —dJ*.

Theorem 3.1. The hierarchical Bayes estimator

Bup = [X'X+V7' VXXV X)XV Xy
= DXy,

is admissible under the sum of squared error losses, where D = [X'X +V ! —
VX (XiviX) i v

Proof. Consider the sequence of prior {r,} for 3 where 7, is N,(0, A™'B,)
with
1
B'=(V1'+ Elp) — VX XIVIX )T X VL
And the joint density of y and 3 with respect to prior m, is given by

fly.B8) = (27r)'%("+17))\§(n+p)



Bayes Estimation in a Hierarchical Linear Model

eap( - Sy - XB)(y - XB)}
eap{ ~ 38'B;'8)
o ezp{ — %[y'y -y X(X'X + B;) 7 X'y]}

exp ~ 518 - (X'X + B X'y

[X'X + BB - (X'X +B;Y) ' X'y]}.  (31)
Then
FBlY) o exp{ ~ J18— (XX + B X'y)

[X'X + B'][8 - (X'X + B;") 7 X'yl}

A ! ! - !
= escp{ - '2—[:6 - D, X y] Dnl[ﬁ - D, X y]},
where D, = (X'X + B;1)™".

Hence the posterior distribution of 3 given y is Ny(D, X'y, A~!D,), where

D' = X'X+B;!

= [X'X+V7- VX (XIVIX) T XV + %Ip
1
= D'+ 2]
D™+ ~1,

where D = [X'X + V1 - V- IX(X{V1X,) T X V1L
Next, integrating with respect to @ in (3.1), it follows that the marginal
density of y is

A
fly) « exp{ - Ey'[I,, - X(X'X + B;l)’lX’]y}. (3.2)
Therefore, from (3.2) the marginal distribution of y with respect to m, is
Na(0, AL, - X(X'X + B71)7' X)),

Let A, = [B(mn, DX'y) — B(mn, Do X'y)], where, B(m,d) is the Bayes risk of
an estimator § of 3 with respect to a prior .
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Hence,
A, = (2m) 30+P) / IA'D,|"3(8 — DX'y)'(8 — DX'y)
A ! ! - !
-exp{ — (8= DaX'y)' DN (B - DuX )}
I — X(X'X + By X
A
exp{ - S - X(X'X + B;Y) ' X'ly}dBdy
~(@m)744?) [ ]\1D, (8 — Do X'y} (B~ DaX'y)
A ! — !
-exp{ - §(ﬁ - DnX y),Dnl(ﬁ - DnX y)}
AL - X(X'X + BY) ' XYk
A
ezp{ — SV - X(X'X + BN X'ly}dBdy. (3.3)
By transformations, * = 8 — DX'y, z = f — D, X"y, (3.2) becomes
(zw)—%(nﬂ)))\%(nﬂ?)/IDnt—%(m’w)
-ea:p{ - %[w +DX'y — D, X'yID; 'z + DX'y — DnX'y]}
|ln = XD, X' reap{ — 23/ (I — XD, X")y] }dzdy
1 1 A
——(27r)_5("+”)/\%("+”) / |Dp|"22'2 - ea:p{ — —2—[z'D;1z]}
1 A
In = XDoX'|eap{ — Z[y'(In — X Do X')y] }dzdy
- (Qﬂ)—%(nﬂ))‘%(nﬂo)|Dn!—%,_[n _ XD,,X'|%
A
: / z'z[eap{ - Jlo + DX'y - DXy D;'[ + DX'y ~ D.X'y]}
A ty—1 A ! !
—exp{ - é—[a: D, m]}]emp{ — E[y (In— XD, X )y]}dwdy.
And using Lemma 3.3, one gets

A, = (2n) 3PN D 3|, — XD, X'|3
. / [(DaX'y — DX'y) (D, X'y — DX'y) + tr(A\"' D) — tr(A~' D)

A
eap{ - S[y'(I. = X Do)yl }dy
— (2n)"3(FPNE(HP)| D |73, — XD, X'|3
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[y X(D.— D)(Da - D)X'y

-exp{ - %[y,(In - XDnX’)y]}dy
= tr[A\7'(In — XD, X')"' X(Dy - DY(Dn — D)X'].

Next, by Lemma 3.2

lim B7' =V - VX (XVTIX) TGV (3.4)
and
lm D, = [X'X+V7 —vIiX,xv-tx) Xy
= D.
Therefore,

lim D, — D =0.
n—o0
Hence, using (3.4) and Lemma 3.1, (3.3) becomes

lim ¢r[A~Y(I, = XD, X")" X(D, — DY (D, — D)X']

n—oo
= A7Yr[ lim (I = XD X")" X (D, — D) (D, — D)X']
= 0,

that is, A, = [B(mn, DX'y) — B(mn, D, X'y)] — 0 as n — oco. By Blyth’s
(1951) method (see Berger 1985, p547) B p is admissible.
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